Skip to main content

Biogenic Silver Nanoparticles: Application in Medicines and Textiles and Their Health Implications

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

This chapter discusses many aspects related to the biogenesis of silver nanoparticles by fungi and the most relevant synergistic antibiotics effects looking as a main target the neglected diseases. Products with immediate application as sterile textile fabrics against contamination in hospitals are also discussed. This chapter shows the relevance of cytotoxicity and toxicity effects of these particles before their use in the final products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ankamwar B, Damle C, Absar A, Murali S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318

    Article  PubMed  CAS  Google Scholar 

  • AshaRani PV, LianWu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 19:255102

    Article  Google Scholar 

  • AshaRani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65. doi:10.1186/1471-2121-10-65

    Article  PubMed  CAS  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    Article  PubMed  CAS  Google Scholar 

  • Bergman-Rossi B, Marcato PD, De Conti R, Durán N (2010) Efficiency of biogenic and chemical silver nanoparticles in the murine cutaneous leishmaniasis via intralesional treatment. J Biomed Nanotechnol (in press)

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  PubMed  CAS  Google Scholar 

  • Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    Article  PubMed  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  PubMed  CAS  Google Scholar 

  • Brocchi M, Marcato PD, De Conti R, Gonzaga AC, Ditondo-Micas AF, Nakasato G, Alves OL and Durán N (2010) A comparison of silver nanoparticles produced chemically and by fungal biosynthesis conjugated to clindamycin acting on several bacteria. J Nanosci Nanotechnol, (in press)

    Google Scholar 

  • Burrel RE, McIntosh CL, Morris IR (1995) Process of activating antimicrobials materials. US Patent 5(455):886

    Google Scholar 

  • Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazera M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A Physicochem Eng Asp 345:202–210

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Espósito E (2005) Mechanistic aspects of biosyntheis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Espósito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Brocchi M (2008) Silver nanoparticles: control of pathogens, toxicity and cytotoxicity. Nanotoxicology 2:S32

    Google Scholar 

  • Durán N, Marcato PD, Teixeira Z, Duran M, Costa FTM, Brocchi M (2009) State of the art of nanobiotechnology applications in neglected diseases. Curr Nanosci 5:396–408

    Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010a) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  • Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010b) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications, Chap. 16. In: Rai M, Kövics G (eds) Progress in mycology: biosynthesis of nanoparticles by microbes and plants. Scientific Publishers, Rajasthan, India, pp 425–449. ISBN 978-81-7233-636-3

    Google Scholar 

  • Durán N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA, Espósito E (2010c) Ecosystem protection by effluent bioremediation: Silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3: doi:10.1186/1477-3155-3-6

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2009) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine:NBM 2009;xx:1–7, doi:10.1016/j.nano.2009.04.006.

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Matter Bioenergy 2:243–245

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim 34:39–43

    Article  Google Scholar 

  • Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles – a brief study. Colloids Surf A Physicochem Eng Aspects 297:63–70

    Article  CAS  Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123

    Article  PubMed  CAS  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • Huber SC, Marcato PD, Nakazato G, Martin D, Durán N (2009) Textile fabrics loading biosynthetic silver nanoparticles: bactericidal activity against gram-positive and gram-negative bacteria. In: CIFARP-2009, 7th. Int. Congress of Pharm. Sci. 6–9 September, Riberão Preto, SP, Abstr. FQ 012

    Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  PubMed  CAS  Google Scholar 

  • Ilic V, Saponjíc Z, Vodnik V, Potkonjak B, Jovancic P, Nedeljkovíc J, Radetic M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 78:564–569

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar MK (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  PubMed  CAS  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    PubMed  CAS  Google Scholar 

  • Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157

    Article  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583

    Article  PubMed  CAS  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: NBM 2010;xx:1–5, doi:10.1016/j.nano.2009.12.002

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarani SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Kreilgaard M (2002) Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 54(1 Suppl):S77–S98

    Article  PubMed  CAS  Google Scholar 

  • Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232

    Article  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu HN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  PubMed  CAS  Google Scholar 

  • Maliszewska I, Sadowski Z (2009) Synthesis and antibacterial activity of silver nanoparticles. J Phys Conf Ser 146:1–6

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Marcato PD, Durán N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8:2216–2229

    Article  PubMed  CAS  Google Scholar 

  • Marcato PD, De Souza GIH, Alves OL, Espósito E, Duran N (2005) Antibacterial activity of silver nanoparticles synthesized by Fusarium oxysporum strain. In: Proceedings of 2nd Mercosur Congr. on Chem. Eng., 4th Mercosur Congr. on Process Sys. Eng., pp. 1–5

    Google Scholar 

  • Marcato PD, De Conti R, Bergmann BR, Duran N (2008) Silver nanoparticles/Clindamycin: Antileishmanial activity. In: Proceedings of 7th Bras. MRS, Met. (SBPMAT) 7: H583

    Google Scholar 

  • Marcato PD, Huber SC and Durán N (2010). Biogenic silver nanoparticles in textile sterilization: Cotton and polyester fabrics. J Nanopart Res (Submitted)

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan M (2001) Bioreduction of Aucyl ions by the fungus, Verticillium species and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3583

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine NBM 5:452–456

    CAS  Google Scholar 

  • Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Inter Arch Occupat Environ Health. 74:1–8

    Article  PubMed  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543

    Article  PubMed  CAS  Google Scholar 

  • Paknikar KM (2009) Stabilizing solutions for submicronic particles, methods for making the same and method of stabilizing submicronic particles. US Patent 7(514):600

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  PubMed  CAS  Google Scholar 

  • Patil SS, Dhumal RS, Varghese MV, Paradkar AR, Khanna PK (2009) Synthesis and antibacterial studies of chloramphenicol loaded nano-silver against Salmonella typhi. Synth React Inorg Met Org Nano Met Chem 39:65–72

    CAS  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:1–6

    Article  Google Scholar 

  • Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Rossi F (2008) Uptake and cytotoxicity of gold nanoparticles in MDCK and HepG2 cell lines can be found under http://www.riskcenter.jp/nanorisk.symposium/index_e.html2008. . http://www.aist-riss.jp/projects/nedo-nanorisk/nanorisk_symposium2008/pdf/03_122_en_ROSSI.pdf

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  PubMed  CAS  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mat Sci Pol 26:419–424

    CAS  Google Scholar 

  • Safaepour M, Ar S, Shahverdi HR, Khorramizadeh MR, Gohari AR (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-Wehi 164. Avicenna J Med Biotech 1:111–115

    CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine NBM 3:168–171

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct 3:115–122

    Google Scholar 

  • Sintubin L, De Windt W, Dick K, Mast J, Van der Ha Verstraete D, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  PubMed  CAS  Google Scholar 

  • Sugunan A, Melin P, Schnürer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81

    Article  CAS  Google Scholar 

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574

    Article  PubMed  CAS  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551

    Article  PubMed  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2009) Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 2009;xx:1–6, doi:10.1016/j.nano.2009.07.002.

  • Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) In vitro evaluation of antibacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int J Chem Tech Res 1:714–716

    CAS  Google Scholar 

  • Tian J, Wong KKL, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–236

    Article  PubMed  CAS  Google Scholar 

  • Totaro P, Rambaldini M (2009) Efficacy of antimicrobial activity of slow release silver. Nanoparticles dressing in post-cardiac surgery mediastinitis. Interact CardioVasc Thor Surg 8:153–154

    Article  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  PubMed  CAS  Google Scholar 

  • Wei QS, Ji J, Fu JH, Shen JC (2007) Norvancomycin-capped silver nanoparticles: synthesis and antibacterial activities against E. coli. Sci China B Chem 50:418–424

    Article  CAS  Google Scholar 

  • Wright JB, Hansen DL, Burrell RE (1998) The comparative efficacy of two antimicrobial barrier dressings. Wounds 10:179–188

    Google Scholar 

  • Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. doi:10.1002/smll.200900126

    Google Scholar 

  • Yin HQ, Langford R, Burrell RE (1999) Comparative evaluation of the antimicrobial activity of ActicoatTM antimicrobial barrier dressing. J Bum Care Rehabil 20:195–200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from FAPESP, CNPq, MCT, the Brazilian Network of Nanocosmetics, the Brazilian Network of Nanobiotechnology (CNPq/MCT) and the Indo/Brazil Program (DST/CNPq) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marcato, P.D., Durán, N. (2011). Biogenic Silver Nanoparticles: Application in Medicines and Textiles and Their Health Implications. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_11

Download citation

Publish with us

Policies and ethics