Skip to main content

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG,volume 0))

Abstract

This paper reviews models of how ground-engaging tools interact with soils, the rigid-body dynamics of excavating machines, and how to combine these models to estimate soil parameters or to find faults in machines from anomalous dynamic behaviour. Soil-tool interaction models rely primarily on assumptions of homogeneous, isotropic soil properties, and tools that have simple geometries and steady motion through the soil. In many cases, these are reasonable assumptions, provided that the strain rate of the soil is not extreme. Parametric formulations are discussed for soil failure under stress from a non-deformable tool; but finiteelement and distinct-element methods are not considered. The formulation of governing equations for the rigid-body dynamics of the machine that carries the tool are discussed. By using parametric equations for the combined system of machine and soil, it is possible to estimate the parameters of the system by measuring machine motions and interaction forces at the tool and base. Possible sources of error are discussed for this approach, with recommendations for how to determine the parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abo-shanab, R.F., Sepehri, N.: Dynamic modeling of tip-over stability of mobile manipulators considering the friction effects. Robotica 23(2), 189–196 (2005)

    Article  Google Scholar 

  • Abo-Shanab, R.F., Sepehri, N.: Effect of base compliance on the dynamic stability of mobile manipulators. Robotica 20(6), 607–613 (2002)

    Article  Google Scholar 

  • Alekseeva, T.V., Artem’ev, K.A., Bromberg, A.A., Voitsekhovskii, R.I., Ul’yanov, N.A.: Machines for earthmoving work, theory and calculation. Intl Public Service, Balkema (1985)

    Google Scholar 

  • Allen, W., Sundermeyer, J.: A structural health monitoring system for earthmoving machines. In: IEEE International Conference on Electro Information Technology, pp. 1–5 (2005)

    Google Scholar 

  • Balovnev, V.I.: New methods for calculating resistance to cutting of soil. Amerind Pub. Co, New Delhi (1983)

    Google Scholar 

  • Bernold, L.E.: Motion and path control for robotic excavation. J. Aerosp. Engrg. ASCE 6(1), 1–18 (1993)

    Article  Google Scholar 

  • Boccafogli, A., Busatti, G., Gherardi, F., Malaguti, F., Paoluzzi, R.: Experimental evaluation of cutting dynamic models in soil bin facility. Journal of Terramechanics 29(1), 95–105 (1992)

    Article  Google Scholar 

  • Dechao, Z., Yusu, Y.: A dynamic model for soil cutting by blade and tine. Journal of Terramechanics 29(3), 317–327 (1992)

    Article  Google Scholar 

  • Fielke, J.M., Riley, T.W.: The universal earthmoving equation applied to chisel plough wings. J. Terramechanics 28(1), 11–19 (1991)

    Article  Google Scholar 

  • Flores, F., Kecskeméthy, A., Pöttker, A.: Workspace Analysis and Maximal Force Calculation of a Face-Shovel Excavator using Kinematical Transformers. In: 12th IFToMM World Congress on the Theory of Machines and Mechanisms, Besancon (2007)

    Google Scholar 

  • Fowkes, R.S., Frisque, D.E., Pariseau, W.G.: Materials handling re-search: Penetration of selected/granular materials by wedgeshaped tools. Washington, D.C.: Rep. of Investigations 7739, Bureau of Mines, U.S.D.I (1973)

    Google Scholar 

  • Frimpong, S., Hu, Y.: Intelligent Cable Shovel Excavation Modeling and Simulation. International Journal of Geomechanics 8(2), 2–10 (2008)

    Article  Google Scholar 

  • Frimpong, S., Hu, Y.: Parametric Simulation of Shovel-Oil Sands Interactions During Excavation. International Journal of Mining, Reclamation and Environment 18(3), 205–219 (2004)

    Article  Google Scholar 

  • Frimpong, S., Hu, Y., Awuah-Offei, K.: Mechanics of cable shovel-formation interactions in surface mining excavations. Journal of Terramechanics 42(1), 15–33 (2005)

    Article  Google Scholar 

  • Frimpong, S., Hu, Y., Inyang, H.: Dynamic Modeling of Hydraulic Shovel Excavators for Geomaterials. International Journal of Geomechanics 8(2), 20–29 (2008)

    Article  Google Scholar 

  • Gill, W.R., Vanden Berg, G.E.: Agriculture handbook: Soil dynamics in tillage and traction Vol.316, Washington, D.C.: Agricultural Research Service, U.S. Department of Agriculture (1968)

    Google Scholar 

  • Hemami, A.: Analysis and preliminary studies for automatic scooping. J. Adv. Robotics 8(5), 511–529 (1994)

    Article  Google Scholar 

  • Hemami, A., Goulet, S., Aubertin, M.: On the resistance of particulate media to bucket loading. In: Proc. 6th Can. Symp. on Min. Automation, pp. 171–178. Canadian Institute of Mining, Montreal (1994)

    Google Scholar 

  • Hong, W.: Modeling, estimation, and control of robot-soil interactions. Massachusetts Institute of Technology. Dept. of Mechanical Engineering (2001)

    Google Scholar 

  • Karmakar, S., Ashrafizadeh, S., Kushwaha, R.: Experimental validation of computational fluid dynamics modeling for narrow tillage tool draft. Journal of Terramechanics 46(6), 277–283 (2009)

    Article  Google Scholar 

  • Khoshzaban-Zavarehi, M.: On-line Condition Monitoring and Fault Diagnosis in Hydraulic System Components using Parameter Estimation and Pattern Classification. The Univeristy of British Columbia (1997)

    Google Scholar 

  • Koivo, A.J.: Kinematics of excavators backhoes for transferring surface material. J. Aerosp. Eng. 7(1), 17–32 (1994)

    Article  Google Scholar 

  • Koivo, A.J., Thoma, M., Kocaoglan, E., Andrade-Cetto, J.: Modeling and Control of Excavator Dynamics during Digging Operation. Journal of Aerospace Engineering 9(1), 10–18 (1996)

    Article  Google Scholar 

  • Korzen, Z.: Mathematical modeling of the cutting process of strongly heterogeneous bulk materials with curvilinear edge tools. Studia Geotechnica et Mechanica 7(1), 27–54 (1985)

    Google Scholar 

  • Lever, P.J., Wang, F.: Intelligent excavator control system for lunar mining system. J. Aerosp. Engrg. ASCE 8(1), 16–24 (1995)

    Article  Google Scholar 

  • Luengo, O., Singh, S., Cannon, H.: Modeling and identification of soil-tool interaction in automated excavation. In: Proc. IEEE/ RSJ Int. Conf. on Intelligent Robots and Sys., pp. 1900–1906. Institute of Electrical and Electronics Engineers, New York (1998)

    Google Scholar 

  • Makarov, I.V.: Approximate calculation of the cutting forces in brittle materials. J. Min. Sci. 5, 54–60 (1992)

    Google Scholar 

  • McCarthy, D.F.: Essential of soil mechanics and foundations: Basic geotechnics, 4th edn. Regents/Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  • McKyes, E.: Soil cutting and tillage. Elsevier, New York (1985)

    Google Scholar 

  • Osman, M.S.: The mechanics of soil cutting blades. J. Agric. Engrg. Res. 9(4), 313–328 (1964)

    Google Scholar 

  • Reece, A.R.: The fundamental equation of earth-moving mechanics. Symposium on Earth-moving machinery. In: Proc., Instn. of Mech. Engrs., vol. 179 (3F), pp. 16–22 (1965)

    Google Scholar 

  • Salcudean, S.E., Tafazoli, S., Lawrence, P.D., Chau, I.: Impedance control of a teleoperated mini excavator. In: Proc. of the 8th IEEE International Conference on Advanced Robotics (ICAR ), Monterey, CA, USA, pp. 19–25 (1997)

    Google Scholar 

  • Seward, D., Bradley, D., Mann, J., Goodwin, M.: Controlling an intelli-gent excavator for autonomous digging in difficult ground. In: Proc. 9th Int. Symp. on Automation and Robotics in Construction (ISARC), Tokyo, pp. 743–750 (1992)

    Google Scholar 

  • Singh, S.: Learning to predict resistive forces during robotic excavation. Robotics and Automation. In: IEEE International Conference on Proceedings 1995, pp. 2102–2107 (1995)

    Google Scholar 

  • Singh, S.: Learning to predict resistive forces during robotic excavation. In: IEEE International Conference on Proceedings Robotics and Automation, pp. 2102–2107 (1995)

    Google Scholar 

  • Singh, S.: State of the art in automation of earthmoving. J.Aerosp. Engrg. ASCE 10(4), 179–188 (1997)

    Article  Google Scholar 

  • Swick, W.C., Perumpral, J.V.: A model for predicting soiltool interaction. J. Terramechanics 25(1), 43–56 (1988)

    Article  Google Scholar 

  • Tan, C.P., Zweiri, Y., Althoefer, K., Seneviratne, L.: Online soil parameter estimation scheme based on Newton-Raphson method for autonomous excavation. IEEE/ASME Transactions on Mechatronics 10(2), 221–229 (2005)

    Article  Google Scholar 

  • Tan, C., Zweiri, Y., Althoefer, K., Seneviratne, L.: Online Soil-bucket Interaction Identification for Autonomous Excavation. Robotics and Automation. In: Proceedings of the 2005 IEEE International Conference on ICRA 2005, pp. 3576–3581 (2005)

    Google Scholar 

  • Thakur, T.C., Godwin, R.J.: The mechanics of soil cutting by a rotating wire. J. Terramechanics 27(4), 291–305 (1990)

    Article  Google Scholar 

  • Timusk, M., Lipsett, M., Mechefske, C.: Fault detection using transient machine signals. Mechanical Systems and Signal Processing 22(7), 1724–1749 (2008)

    Article  Google Scholar 

  • Vähä, P.K., Skibniewski, M.J.: Dynamic Model of Excavator. Journal of Aerospace Engineering 6(2), 148–158 (1993)

    Article  Google Scholar 

  • Vahed, S., Althoefer, K., Seneviratne, L.D., Song, X., Dai, J.S., Lam, H.K.: Soil Estimation Based on Dissipation Energy During Autonomous Excavation. In: Proceedings of the 17th IFAC World Congress, pp. 13821–13826 (2008)

    Google Scholar 

  • Vahed, S., Delaimi, H., Althoefer, K., Seneviratne, L.: On-line energy-based method for soil estimation and classification in autonomous excavation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 554–559 (2007)

    Google Scholar 

  • Vesic, A.S.: Synthesis of highway practice #42: Design of pile foundations. Washington, D.C. Nat. Coop. Hwy. Res. Prog. Transportation Research Board, National Research Council (1977)

    Google Scholar 

  • Willman, B.M., Boles, W.W.: Soil-tool interaction theories as they apply to lunar soil simulant. J. Aerosp. Engrg. ASCE 8(2), 88–99 (1996)

    Article  Google Scholar 

  • Yao, Y., Zeng, D.C.: Investigation of the relationship between soil-metal friction and sliding speed. J. Terramechanics 27(4), 283–290 (1990)

    Article  Google Scholar 

  • Yin, Y., Grondin, G., Obaia, K., Elwi, A.: Fatigue life prediction of heavy mining equipment. Part 1: Fatigue load assessment and crack growth rate tests. Journal of Constructional Steel Research 63(11), 1494–1505 (2007)

    Article  Google Scholar 

  • Yong, R.N., Warkentin, B.P.: Introduction to soil behavior. McMillan, New York (1966)

    Google Scholar 

  • Zelenin, A.N., Balovnev, V.I., Kerov, I.P.: Machines for moving the earth. Amerind Publishing, New Delhi (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lipsett, M.G., Moghaddam, R.Y. (2011). Modeling Excavator-Soil Interaction. In: Wan, R., Alsaleh, M., Labuz, J. (eds) Bifurcations, Instabilities and Degradations in Geomaterials. Springer Series in Geomechanics and Geoengineering, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18284-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18284-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18283-9

  • Online ISBN: 978-3-642-18284-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics