Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 3494 Accesses

Abstract

In this book the fractional-order nonlinear systems and methods for their numerical simulation and stability analysis are presented. By illustrative examples we have shown chaotic behaviour of such systems and studied their dynamics. We presented the examples of electrical, mechanical, hydrodynamical, chemical, biological, economical, and the other chaotic systems. We studied only the state trajectories (attractors) and we avoided bifurcation analysis and Poincaré maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad W. M. and Sprott J. C., 2003, Chaos in fractional-order autonomous nonlinear systems, Chaos, Solitons and Fractals, 16, 339–351.

    Article  Google Scholar 

  • Ahmad W. M., 2005a, Generation and control of multi-scroll chaotic attractors in fractional order systems, Chaos, Solitons and Fractals, 25, 727–735.

    Article  Google Scholar 

  • Ahmad W. M., 2005b, Hyperchaos in fractional order nonlinear systems, Chaos, Solitons and Fractals, 26, 1459–1465.

    Article  Google Scholar 

  • Arena P., Caponetto R., Fortuna L. and Porto D., 2000, Nonlinear Noninteger Order Circuits and Systems — An Introduction, World Scientific, Singapore.

    Book  Google Scholar 

  • Al-Assaf Y., El-Khazali R. and Ahmad W., 2004, Identification of fractional chaotic system parameters, Chaos, Solitons and Fractals, 22, 897–905.

    Article  Google Scholar 

  • Caponetto R., Dongola G., Fortuna L. and Petráš I., 2010, Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore.

    Book  Google Scholar 

  • Deng H., Li T., Wang Q. and Li H., 2009, A fractional-order hyperchaotic system and its synchronization, Chaos, Solitons and Fractals, 41, 962–969.

    Article  Google Scholar 

  • Deng W., Li Ch. and Lu J., 2007, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 409–416.

    Article  MathSciNet  Google Scholar 

  • Deng W., 2007a, Short memory principle and a predictor-corrector approach for fractional differentional equations, Journal of Computational and Applied Mathematics, 206, 174–188.

    Article  MathSciNet  Google Scholar 

  • Deng W., 2007b, Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 1510–1522.

    Article  MathSciNet  Google Scholar 

  • Deng W. and Lu J., 2007, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Physics Letters A, 369, 438–443.

    Article  Google Scholar 

  • Diethelm K., Ford N. J., Freed A. D. and Luchko Yu., 2005, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194, 743–773.

    Article  MathSciNet  Google Scholar 

  • Ford N. and Simpson A., 2001, The numerical solution of fractional differential equations: speed versus accuracy, Num. Anal. Report 385, Manchester Centre for Computational Mathematics.

    Google Scholar 

  • Guo L. J., 2006, Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization, Chinese Physics, 15, 301–305.

    Article  Google Scholar 

  • Hartley T. T., Lorenzo C. F. and Qammer H. K., 1995, Chaos on a fractional Chua’s system, IEEE Trans. Circ. Syst. Fund. Theor. Appl., 42, 485–490.

    Article  Google Scholar 

  • Hilfer R., 2000, Application of fractional calculus in physics, World Scientific, Singapore.

    Book  Google Scholar 

  • Kiani-B A., Fallahi K., Pariz N. and Leung H., 2009, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Communications in Nonlinear Science and Numerical Simulation, 14, 863–879.

    Article  MathSciNet  Google Scholar 

  • Li X. F., Chlouverakis K. E. and Xu D. L., 2009, Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lü, Nonlinear Analysis: Real World Applications, 10, 2357–2368.

    Article  MathSciNet  Google Scholar 

  • Lian Q. D., Qiao W. and Hong G., 2007, Chaotic attractor transforming control of hybrid Lorenz-Chen system, Chinese Phys. B, 17.

    Google Scholar 

  • Matouk A. E., 2009, Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system, Physics Letters A, 373, 2166–2173.

    Article  Google Scholar 

  • Parker T. S. and Chua L. O., 1989, Practical Numerical Algorithm for Chaotic Systems, Springer, New York.

    Book  Google Scholar 

  • Petráš I. and Podlubny I., 2007, State space description of national economies: the V4 countries, Computational Statistics & Data Analysis, 52, 1223–1233.

    Article  MathSciNet  Google Scholar 

  • Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego.

    MATH  Google Scholar 

  • Podlubny I., 2000, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis, 3, 359–386.

    MathSciNet  MATH  Google Scholar 

  • Podlubny I., Chechkin A., Škovránek T., Chen Y. Q. and Vinagre B. M. J., 2009, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, Journal of Computational Physics, 228, 3137–3153.

    Article  MathSciNet  Google Scholar 

  • Tam L. M. and Tou W. M. S., 2008, Parametric study of the fractional-order Chen-Lee system, Chaos, Solitons and Fractals, 37, 817–826.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2007a, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Proc., 1, 171–181.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri, M., 2007b, A necessary condition for double scroll attractor existence in fractional-order systems, Physics Letters A, 367, 102–113.

    Article  Google Scholar 

  • Tavazoei M. S., Haeri M., Jafari S., Bolouki S. and Siami M., 2008, Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations, IEEE Trans. Ind. Electron., 55, 4094–4101.

    Article  Google Scholar 

  • Tavazoei M. S. and Haeri M., 2008, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Analysis, 69, 1299–1320.

    Article  MathSciNet  Google Scholar 

  • Vinagre B. M., Chen Y. Q. and Petráš I., 2003, Two direct Tustin discretization methods for fractional-order differentiator/integrator, J. Franklin Inst., 340, 349–362.

    Article  MathSciNet  Google Scholar 

  • Wang Z., Sun Y., Qi G. and van Wyk B. J., 2010, The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor, Nonlinear Dyn., DOI: 10.1007/s11071-010-9705-7.

    Google Scholar 

  • West B. J., Bologna M. and Grigolini P., 2002, Physics of Fractal Operators, Springer, New York.

    Google Scholar 

  • Yao L. S., 2010, Computed chaos or numerical errors, Nonlinear Analysis: Modelling and Control, 15, 109–126.

    Article  MathSciNet  Google Scholar 

  • Ye H. and Ding Y., 2009, Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model, Mathematical Problems in Engineering, Article ID 378614.

    Google Scholar 

  • Zaslavsky G. M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Zhou S., Li H. and Zhu Z., 2008, Chaos control and synchronization in a fractional neuron network system, Chaos, Solitons and Fractals, 36, 973–984.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petráš, I. (2011). Conclusion. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18101-6_7

Download citation

Publish with us

Policies and ethics