Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 850))

  • 1750 Accesses

Abstract

Strictly speaking, real physical systems do not exist in complete isolation in nature. The interaction with the environment generally causes the system to become a statistical mixture, leading to correlation or entanglement between them and decoherence. The theory of open quantum systems was formulated precisely to deal with this kind of problems as well as the measurement process. In analogy to open classical systems, there are also three main different approaches to treat quantum dissipative dynamics: (i) effective time-dependent Hamiltonians, (ii) nonlinear Schrödinger equations and (iii) the system-plus-bath models within a conservative scenario. This theoretical scheme is valid for both dissipative and stochastic dynamics. In this context, the terminology of quantum trajectories is used, to be not confused with those found in Bohmian mechanics. As an illustrative example, adsorbate diffusion on flat surfaces will be considered since it is susceptible to analytical work. This system will also provide the grounds for a more detailed study of wave-packet stochastic dynamics presented in Volume 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, to simplify the notation, quantum operators will be represented as dynamical variables, i.e., without the hat symbol on top (e.g., O instead of \(\hat{O}\)). Depending on the context, the reader will be able to identify easily whether a given symbol is acting either as a variable or as an operator.

  2. 2.

    The \(\delta\)-function counts only one half when the integration is carried out from zero to infinity.

  3. 3.

    This type of quantum trajectories must not be confused with Bohmian trajectories (see Chap. 6), which are also regarded as quantum or causal trajectories. Here, the concept refers to the time series or realization associated with a given observable, i.e., it is synonymous of stochastic trajectory (see Sect. B.2 of Appendix B).

References

  1. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  3. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  4. Accardi, L., Lu, Y.G., Volovich, I.: Quantum Theory and Its Stochastic Limit. Springer, Berlin (2002)

    MATH  Google Scholar 

  5. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Complexity, Berlin (2004)

    MATH  Google Scholar 

  6. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)

    MATH  Google Scholar 

  7. Yang, C.N., Feldman, D.: The S-matrix in the Heisenberg representation. Phys. Rev. 79, 972–978 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1990)

    MATH  Google Scholar 

  9. Jung, P.J.: Periodically driven stochastic systems. Phys. Rep. 234, 175–295 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  10. Percival, I.C.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  11. Kohen, D., Tannor, D.J.: Phase space approach to dissipative molecular dynamics. Adv. Chem. Phys. 111, 219–398 (2000)

    Article  Google Scholar 

  12. May, V., Kuhn, O.: Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH Verlag, Weinheim (2003)

    Book  Google Scholar 

  13. Kapral, R., Kapral, R.: Mixed quantum-classical dynamics. J. Chem. Phys. 110, 8919–8929 (1999)

    Google Scholar 

  14. Kapral, R.: Quantum-classical dynamics in a classical bath. J. Phys. Chem. A 105, 2885–2889 (2001)

    Article  Google Scholar 

  15. Toutounji, M., Kapral, R.: Subsystem dynamics in mixed quantum-classical systems. Chem. Phys. 268, 79–89 (2001)

    Article  Google Scholar 

  16. Oxtoby, D.W.: Dephasing of molecular vibrations in liquids. Adv. Chem. Phys. 40, 1–48 (1979)

    Article  Google Scholar 

  17. Levine, A.M., Shapiro, M., Pollak, E.: Hamiltonian theory for vibrational dephasing rates of small molecules in liquids. J. Chem. Phys. 88, 1959–1966 (1988)

    Article  ADS  Google Scholar 

  18. Bader, J.S., Berne, B.J., Pollak, E., Hänggi, P.: The energy relaxation of a nonlinear oscillator coupled to a linear bath. J. Chem. Phys. 104, 1111–1119 (1996)

    Article  ADS  Google Scholar 

  19. Bader, J.S., Berne, B.J.: Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100, 8359–8366 (1994)

    Article  ADS  Google Scholar 

  20. Egorov, S.A., Berne, B.J.: Vibrational energy relaxation in the condensed phases: Quantum vs classical bath for multiphonon processes. J. Chem. Phys. 107, 6050–6061 (1997)

    Article  ADS  Google Scholar 

  21. Ford, G.W., O’Conell, R.F.: There is no quantum regression theorem. Phys. Rev. Lett. 77, 798–801 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  ADS  Google Scholar 

  23. Aharonovand, Y., Rohrlich, D.: Quantum Paradoxes. Wiley-VCH, Weinheim (2005)

    Book  Google Scholar 

  24. Ritchie, N.W.M., Story, J.G., Hulet, R.G.: Realization of a measurement of a “weak value”. Phys. Rev. Lett. 66, 1107–1110 (1991)

    Article  ADS  Google Scholar 

  25. Jozsa, R.: Complex weak values in quantum measurement. Phys. Rev. A 76(1–3), 044103 (2007)

    Article  ADS  Google Scholar 

  26. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989)

    Article  ADS  Google Scholar 

  27. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Applications to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993)

    Article  ADS  Google Scholar 

  28. Wang, M.S.: Stochastic interpretation of quantum mechanics in complex space. Phys. Rev. Lett. 79, 3319–3322 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Sudarshan, E.C.G., Misra, B.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  30. Peres, A.: Zeno paradox in quantum theory. Am. J. Phys. 48, 931–932 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  31. Itano, W.M., Heinsen, D.J., Bokkinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    Article  ADS  Google Scholar 

  32. Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature 405, 546–549 (2000)

    Article  ADS  Google Scholar 

  33. Vineyard, G.H.: Scattering of slow neutrons by a liquid. Phys. Rev. 110, 999–1010 (1958)

    Article  ADS  Google Scholar 

  34. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928)

    Google Scholar 

  35. Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949) (see also reprint in: Proc. IEEE 86, 447–457 (1998))

    Google Scholar 

  36. Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinburgh A 35, 181–194 (1915)

    Google Scholar 

  37. Kotel’nikov, V.A.: On the capacity of the ‘ether’ and of cables in electrical communication. In: Proceedings of the First All-Union Conference on the Technological Reconstruction of the Communications Sector and Low-Current Engineering—Izd. Red. Upr. Svyazi RKKA (Moscow, 1933). Translated into English in: Modern Sampling Theory, Benedetto, J.J., Ferreira, P.J.S.G. Birkhäuser, Berlin (2001), Chap. 2

    Google Scholar 

  38. Kubo, R.: The fluctuation-dissipation theorem. Prog. Theor. Phys. 29, 255–284 (1966)

    Google Scholar 

  39. Caldirola, P.: Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393–400 (1941)

    Article  Google Scholar 

  40. Kanai, E.: On the quantization of the dissipative systems. Prog. Theor. Phys. 3, 440–442 (1948)

    Article  ADS  Google Scholar 

  41. Kerner, E.H.: Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys. 3, 371–377 (1958)

    Article  ADS  Google Scholar 

  42. Jannussis, A.D., Brodimas, G.N., Streclas, A.: Propagator with friction in quantum mechanics. Phys. Lett. A 74, 6–10 (1979)

    Article  ADS  Google Scholar 

  43. Jannussis, A., Filipakis, P., Philipakis, Th.: Quantum mechanics in phase space. Physica A 102, 561–567 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  44. Schuch, D.: A new Lagrangian–Hamiltonian formalism for dissipative systems. Int. J. Quantum Chem. 24, 767–780 (1990)

    Article  Google Scholar 

  45. Dekker, H.: Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep. 80, 1–110 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  46. Senitzky, I.R.: Dissipation in quantum mechanics. The harmonic oscillator. Phys. Rev. 119, 670–679 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504–515 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Kostin, M.D.: On the Schrödinger–Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Article  ADS  Google Scholar 

  49. Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)

    Article  ADS  Google Scholar 

  50. Hasse, R.W.: On the quantum mechanical treatment of dissipative systems. J. Math. Phys. 16, 2005–2011 (1975)

    Article  ADS  Google Scholar 

  51. Schuch, D.: Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems. Phys. Rev. A 55, 935–940 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  52. Risken, H.: The Fokker–Planck Equation. Springer, Berlin (1984)

    MATH  Google Scholar 

  53. Doebner, H.-D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  54. Gisin, N.: A simple nonlinear dissipative quantum evolution equation. J. Phys. A 14, 2259–2267 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Gisin, N.: Microscopic derivation of a class of non-linear dissipative Schrödinger-like equations. Physica A 111, 364–370 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  56. Razavy, M.: Quantization of dissipative systems. Z. Phys. B 26, 201–206 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  57. Wagner, H.-J.: Schrödinger quantization and variational principles in dissipative quantum theory. Z. Phys. B 95, 261–273 (1994)

    Article  ADS  Google Scholar 

  58. Schuch, D.: Effective description of the dissipative interaction between simple and model-system and their environment. Int. J. Quantum Chem. 72, 537–547 (1999)

    Article  Google Scholar 

  59. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Quantum Langevin equation. Phys. Rev. A 37, 4419–4428 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  60. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear system. Ann. Phys. (NY) 24, 118–173 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  62. Ankerhold, J.: Quantum Tunneling in Complex Systems. Springer Tracts in Modern Physics, vol. 224. Springer, Berlin (2007)

    Google Scholar 

  63. Yu, L.H., Sun, C.-P.: Evolution of the wave function in a dissipative system. Phys. Rev. A 49, 592–595 (1994)

    Google Scholar 

  64. Sun, C.-P., Yu, L.H.: Exact dynamics of a quantum dissipative system in a constant external field. Phys. Rev. A 51, 1845–1853 (1995)

    Article  ADS  Google Scholar 

  65. Feshbach, H.: Unified theory of nuclear reaction. Ann. Phys. (NY) 5, 357–390 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Mott, N.F., Massey, H.S.W.: Theory of Atomic Collision. Oxford University Press, London (1965)

    Google Scholar 

  67. Yan, Y., Xu, R.: Quantum mechanics of dissipative systems. Annu. Rev. Phys. Chem. 56, 187–219 (2005)

    Article  ADS  Google Scholar 

  68. Tanimura, Y.: Stochastic Liouville, Fokker–Planck and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn 75, 082001(1–39) (2006)

    Google Scholar 

  69. Hakim, V., Ambegaokar, V.: Quantum theory of a free particle interacting with a linearly dissipative environment. Phys. Rev. A 32, 423–434 (1985)

    Article  ADS  Google Scholar 

  70. Hu, B.L., Paz, J.P., Zhang, Y.: Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D 45, 2843–2861 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Ford, G.W., O’Connell, R.F.: Exact solution of the Hu-Paz-Zhang master equation. Phys Rev. D 64, 105020-1,13 (2001)

    Google Scholar 

  72. Schmid, A.: On a quasiclassical Langevin equation. J. Low. Temp. Phys. 49, 609–626 (1982)

    Article  ADS  Google Scholar 

  73. Rips, I., Pollak, E.: Quantum Kramers model: solution of the turnover problem. Phys. Rev. A 41, 5366–5382 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  74. Hänggi, P., Talkner, P., Borbovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  ADS  Google Scholar 

  75. Ankerhold, J., Pechukas, P., Grabert, H.: Strong friction limit in quantum mechanics. The quantum Smoluchowski equation. Phys. Rev. Lett. 87, 086802(1–4) (2001)

    Google Scholar 

  76. Ford, G.W., Kac, M.: On the quantum Langevin equation. J. Stat. Phys. 46, 803–810 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Sánchez-Cañizares, J., Sols, F.: Translational symmetry and microscopic preparation in oscillator models of quantum dissipation. Physica A 122, 181–193 (1994)

    Article  Google Scholar 

  78. Martínez-Casado, R., Sanz, A.S., Vega, J.L., Rojas-Lorenzo, G., Miret-Artés, S.: Linear response theory of activated surface diffusion with interacting adsorbates. Chem. Phys. 370, 180–193 (2010)

    Article  ADS  Google Scholar 

  79. Van Hove, L.: Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954)

    Article  ADS  MATH  Google Scholar 

  80. Lovesey, S.W.: Theory of Neutron Scattering from Condensed Matter. Clarendon, Oxford (1984)

    Google Scholar 

  81. Miret-Artés, S., Pollak, E.: The dynamics of activated surface diffusion. J. Phys. Condens. Matter 17, S4133–S4150 (2005)

    Article  ADS  Google Scholar 

  82. Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Martínez-Casado, R., Rojas-Lorenzo, G., Sanz, A.S., Miret-Artés, S.: Two-bath model for activated surface diffusion of interacting adsorbates. J. Chem. Phys. 132, 054704(1–7) (2010)

    Google Scholar 

  84. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, New York (1965)

    MATH  Google Scholar 

  85. Schulman, L.S.: Techniques and Applications of Path Integrals. Wiley, New York (1981)

    Google Scholar 

  86. Kleinert, H.: Path Integrals in Quantum Mechanics Statistics, Polymer Physics and Financial Markets. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  87. Ankerhold, J., Saltzer, M., Pollak, E.: A study of the semiclassical initial value representation at short times. J. Chem. Phys. 116, 5925–5932 (2002)

    Article  ADS  Google Scholar 

  88. Feynman, R.P.: Statistical Mechanics. W A Benjamin, Reading (1972)

    Google Scholar 

  89. Grabert, H., Schramm, P., Ingold, G.-L.: Quantum Brownian Motion: The Functional Integral Approach. Phys. Rep. 168, 115–207 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  90. Ingold, G.-L.: Path Integrals and their Application to Dissipative Quantum Systems. Lecture Notes Physics, vol. 611, pp. 1–53. Springer, Berlin (2002)

    Google Scholar 

  91. Langer, J.S.: Theory of the condensation point. Ann. Phys. (NY) 41, 108–157 (1967)

    Article  ADS  Google Scholar 

  92. Ankerhold, J., Pollak, E. (eds.): Real-time dynamics in complex quantum systems. Chem. Phys. (Special Issue) 322 (2006)

    Google Scholar 

  93. Grifoni, M., Hänggi, P.: Driven quantum tunneling. Phys. Rep. 304, 229–354 (1988)

    Article  ADS  Google Scholar 

  94. Makri, N.: Numerical path integral techniques for long time dynamics of quantum dissipative systems. J. Math. Phys. 36, 2430–2457 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. Linblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119–130 (1976)

    Google Scholar 

  96. Linblad, G.: Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 10, 393–406 (1976)

    Article  ADS  Google Scholar 

  97. Carmichael, H.: An Open Systems Approach to Quantum Optics. Lecture Notes in Physics, vol. 18. Springer, Berlin (1993)

    Google Scholar 

  98. Itô, K.: Foundations of stochastic differential equations in infinite dimensional spaces. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 47. SIAM, Philadelphia (1984)

    Google Scholar 

  99. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    Google Scholar 

  100. Gisin, N., Percival, I.C.: The quantum-state diffusion model applied to open systems. J. Phys. A 25, 5677–5691 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  101. Gisin, N., Percival, I.C.: The quantum state diffusion picture of physical processes. J. Phys. A 26, 2245–2260 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  102. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  103. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of Stochastic Differential Equations Through Computer Experiments. Springer, Berlin (1994)

    Google Scholar 

  104. Klauder, J.R., Petersen, W.P.: Numerical integration of multiplicative-noise stochastic differential equations. SIAM J. Numer. Anal. 22, 1153–1166 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  105. Strunz, W.T.: The Brownian motion stochastic Schrödinger equation. Chem. Phys. 268, 237–248 (2001) (This paper appears in a Special Issue devoted to Quantum Dynamics of Open Systems, issues 1–3)

    Google Scholar 

  106. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open quantum systems. Phys. Rev. Lett. 103, 210401(1–4) (2009)

    Google Scholar 

  107. Vacchini, B., Smirne, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Markovianity and non-Markovianity in quantum and classical systems. New J. Phys. 13, 093004(1–26) (2011)

    Google Scholar 

  108. Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)

    Article  Google Scholar 

  109. Horsthemke, W., Lefever, W.: Noise-Induced Transitions. Springer Series in Synergetics, vol. 15. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2012). Dynamics of Open Quantum Systems. In: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol 850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18092-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18092-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18091-0

  • Online ISBN: 978-3-642-18092-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics