Skip to main content

Bypassing State Initialisation in Perfect State Transfer Protocols on Spin-Chains

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6519))

Included in the following conference series:

Abstract

Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only specific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Osterloh, A., et al: Nature 416, 608 (2002); Osborne, T.J., Nielsen, M.A.: Phys. Rev. A 66, 032110 (2002)

    Google Scholar 

  2. Schuch, N., et al.: Phys. Rev. Lett. 100, 030504 (2008)

    Article  MathSciNet  Google Scholar 

  3. Wilson, K.G.: Rev. Mod. Phys. 47, 773 (1975); White, S.R.: Phys. Rev. Lett. 69, 2863 (1992); Fannes, M., Nachtergaele, B., Werner, R.F.: Lett. Math. Phys. 25, 249 (1992); Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003); Verstraete, F., Garcia-Ripoll, J.J., Cirac, J.I.: Phys. Rev. Lett. 93, 207204 (2004); Schollwöck, U.: Rev. Mod. Phys. 77, 259 (2005); Verstraete, F., Cirac, J.I. (2004), e-print arXiv:cond-mat/0407066; Vidal, G.: Phys. Rev. Lett. 99, 220405 (2007); Anders, S., et al.: Phys. Rev. Lett. 97, 107206 (2006); Anders, S., Briegel, H.-J., Dür, W.: New J. Phys. 9, 361 (2007)

    Google Scholar 

  4. Di Franco, C., Paternostro, M., Kim, M.S.: Phys. Rev. Lett. 101, 230502 (2008)

    Article  Google Scholar 

  5. Benjamin, S.C., Bose, S.: Phys. Rev. Lett. 90, 247901 (2003)

    Article  Google Scholar 

  6. DiVincenzo, D.P.: Mesoscopic Electron Transport. In: Kowenhoven, L., Schön, G., Sohn, L. (eds.) Kluwer, Dordrecht (1997)

    Google Scholar 

  7. Bose, S.: Phys. Rev. Lett. 91, 207901 (2003); Bose, S.: Contemp. Phys. 48, 13 (2007); Burgarth, D.: PhD thesis, University College London (2006)

    Google Scholar 

  8. Christandl, M., et al.: Phys. Rev. Lett. 92, 187902 (2004); Christandl, M., et al.: Phys. Rev. A 71, 032312 (2005); Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Europhys. Lett. 65, 297 (2004); J. Phys.: Condens. Matter 16, 4991 (2004)

    Google Scholar 

  9. Di Franco, C., Paternostro, M., Palma, G.M.: Int. J. Quant. Inf. 6(Supp. 1), 659 (2008)

    Article  Google Scholar 

  10. The final state of spin N can be easily obtained from Eqs. (3)-(5). For instance, if N is even, \(\langle{\hat{Z}_N(t^*)}\rangle=\langle{\hat{Z}_1(0)}\rangle\), \(\langle{\hat{X}_1\hat{X}_N(t^*)}\rangle=\langle{\hat{X}_1\hat{X}_N(0)}\rangle\) and \(\langle{\hat{X}_1\hat{Y}_N(t^*)}\rangle=\langle{\hat{Y}_1\hat{X}_N(0)}\rangle\). If qubit N has been projected onto ∣ ± N 〉 [for which \(\langle{\hat{X}_N(0)}\rangle=\pm(-1)^{\frac{N}{2}}\)], we have \(\langle{\hat{Z}_N(t^*)}\rangle=\langle{\hat{Z}_1(0)}\rangle\), \(\langle{\hat{X}_1\hat{X}_N(t^*)}\rangle=\pm(-1)^{\frac{N}{2}}\langle{\hat{X}_1(0)}\rangle\) and \(\langle{\hat{X}_1\hat{Y}_N(t^*)}\rangle=\pm(-1)^{\frac{N}{2}}\langle{\hat{Y}_1(0)}\rangle\). The state of spin N, after the measurement performed on spin 1, will satisfy \(\langle{\hat{Z}_N(t^*)}\rangle=\langle{\hat{Z}_1(0)}\rangle\), \(\langle{\hat{X}_N(t^*)}\rangle=(-1)^{\frac{N}{2}}c\,\langle{\hat{X}_1(0)}\rangle\) and \(\langle{\hat{Y}_N(t^*)}\rangle=(-1)^{\frac{N}{2}}c\,\langle{\hat{Y}_1(0)}\rangle\), where c is the product of the measurement outcomes at 1 (after the evolution) and N (before the evolution). The state \((\hat{Z}^{\frac{N}{2}})\rho^{in}(\hat{Z}^{\frac{N}{2}})\) [\((\hat{Z}^{\frac{N}{2}+1})\rho^{in}(\hat{Z}^{\frac{N}{2}+1})\)] satisfies these conditions for c = 1 (c = − 1)

    Google Scholar 

  11. Di Franco, C., et al.: Phys. Rev. A 76, 042316 (2007)

    Article  Google Scholar 

  12. Markiewicz, M., Wiesniak, M.: Phys. Rev. A 79, 054304 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Franco, C., Paternostro, M., Kim, M.S. (2011). Bypassing State Initialisation in Perfect State Transfer Protocols on Spin-Chains. In: van Dam, W., Kendon, V.M., Severini, S. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2010. Lecture Notes in Computer Science, vol 6519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18073-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18073-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18072-9

  • Online ISBN: 978-3-642-18073-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics