Skip to main content

Rhythmic Neuronal Synchronization Subserves Selective Attentional Processing

  • Chapter
  • First Online:
Characterizing Consciousness: From Cognition to the Clinic?

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Selective attention relies on dynamic restructuring of cortical information flow to prioritize neuronal communication between those neuronal groups conveying information about behaviorally relevant information while reducing the influence from groups encoding irrelevant and distracting information. Electrophysiological evidence suggests that such selective neuronal communication is instantiated and sustained through selective neuronal synchronization of rhythmic gamma band activity within and between neuronal groups. Attentionally modulated synchronization patterns evolve rapidly, are evident even before sensory inputs arrive, follow closely subjective readiness to process information in time, can be sustained for prolonged time periods, and convey specific information about perceptually selected sensory features and motor plans. These functional implications of selective synchronization patterns are complemented by recent insights about the mechanistic origins of rhythmic synchronization at micro- and macro- scales of cortical neuronal processing, suggesting that selective attention is subserved by precise neuronal synchronization that is selective in space, time and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azouz R (2005) Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. J Neurophysiol 94:2785–2796

    PubMed  Google Scholar 

  • Azouz R, Gray CM (2003) Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37:513–523

    PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    PubMed  CAS  Google Scholar 

  • Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501

    PubMed  CAS  Google Scholar 

  • Bichot NP, Rossi AF, Desimone R (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308:529–534

    PubMed  CAS  Google Scholar 

  • Börgers C, Kopell NJ (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509–538

    PubMed  Google Scholar 

  • Börgers C, Kopell NJ (2008) Gamma oscillations and stimulus selection. Neural Comput 20:383–414

    PubMed  Google Scholar 

  • Börgers C, Epstein S, Kopell NJ (2005) Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc Natl Acad Sci USA 102:7002–7007

    PubMed  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854

    PubMed  CAS  Google Scholar 

  • Buia C, Tiesinga P (2006) Attentional modulation of firing rate and synchrony in a model cortical network. J Comput Neurosci 20:247–264

    PubMed  Google Scholar 

  • Buia CI, Tiesinga PH (2008) The role of interneuron diversity in the cortical microcircuit for attention. J Neurophysiol 99:2158–2182

    PubMed  Google Scholar 

  • Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    PubMed  CAS  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press Inc., Oxford

    Google Scholar 

  • Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56:771–783

    PubMed  CAS  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    PubMed  CAS  Google Scholar 

  • Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    PubMed  CAS  Google Scholar 

  • Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7:308–313

    PubMed  CAS  Google Scholar 

  • Chalk M, Herrero JL, Gieselmann MA, Delicato LS, Gotthardt S, Thiele A (2010) Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron 66:114–125

    PubMed  CAS  Google Scholar 

  • Chelazzi L, Miller EK, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347

    PubMed  CAS  Google Scholar 

  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    PubMed  CAS  Google Scholar 

  • Cohen MR, Maunsell JH (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600

    PubMed  CAS  Google Scholar 

  • Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322

    PubMed  CAS  Google Scholar 

  • Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008) Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex 18:386–396

    PubMed  Google Scholar 

  • Engel AK, Fries P (2010) Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol 20:156–165

    PubMed  CAS  Google Scholar 

  • Engel AK, Konig P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606

    PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    PubMed  CAS  Google Scholar 

  • Fan J, Byrne J, Worden MS, Guise KG, McCandlissa BD, Fossella J, Posner MI (2007) The relation of brain oscillations to attentional networks. J Neurosci 27:6197–6206

    PubMed  CAS  Google Scholar 

  • Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. Eur J Neurosci 12:1453–1465

    PubMed  CAS  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    PubMed  Google Scholar 

  • Fries P, Neuenschwander S, Engel AK, Goebel R, Singer W (2001a) Rapid feature selective neuronal synchronization through correlated latency shifting. Nat Neurosci 4:194–200

    PubMed  CAS  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001b) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    PubMed  CAS  Google Scholar 

  • Fries P, Schröder JH, Roelfsema PR, Singer W, Engel AK (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J Neurosci 22:3739–3754

    PubMed  CAS  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    PubMed  CAS  Google Scholar 

  • Fries P, Womelsdorf T, Oostenveld R, Desimone R (2008) The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 28:4823–4835

    PubMed  CAS  Google Scholar 

  • Ghose GM, Maunsell JH (2002) Attentional modulation in visual cortex depends on task timing. Nature 419:616–620

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696

    PubMed  CAS  Google Scholar 

  • Gottlieb J (2002) Parietal mechanisms of target representation. Curr Opin Neurobiol 12:134–140

    PubMed  CAS  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    PubMed  CAS  Google Scholar 

  • Gray CM, Engel AK, Konig P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2:607–619

    PubMed  Google Scholar 

  • Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–1210

    PubMed  CAS  Google Scholar 

  • Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055

    PubMed  CAS  Google Scholar 

  • Gross J, Schnitzler A, Timmermann L, Ploner M (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5(5):e133

    PubMed  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    PubMed  CAS  Google Scholar 

  • Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J Neurosci 27:9270–9277

    PubMed  CAS  Google Scholar 

  • Herculano-Houzel S, Munk MH, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19:3992–4010

    PubMed  CAS  Google Scholar 

  • Hoogenboom N, Schoffelen JM, Oostenveld R, Parkes LM, Fries P (2005) Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 29:764–773

    PubMed  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8:234–241

    PubMed  CAS  Google Scholar 

  • Jin Y, O’Halloran JP, Plon L, Sandman CA, Potkin SG (2006) Alpha EEG predicts visual reaction time. Int J Neurosci 116:1035–1044

    PubMed  Google Scholar 

  • Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3(12):e402

    PubMed  Google Scholar 

  • Jutras MJ, Fries P, Buffalo EA (2009) Gamma-band synchronization in the macaque hippocampus and memory formation. J Neurosci 29:12521–12531

    PubMed  CAS  Google Scholar 

  • Kaiser J, Hertrich I, Ackermann H, Lutzenberger W (2006) Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage 30:1376–1382

    PubMed  Google Scholar 

  • Kayser C, König P (2004) Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials. Eur J Neurosci 19:485–489

    PubMed  Google Scholar 

  • Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol 95:3844–3851

    PubMed  Google Scholar 

  • Khayat PS, Spekreijse H, Roelfsema PR (2006) Attention lights up new object representations before the old ones fade away. J Neurosci 26:138–142

    PubMed  CAS  Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97:1867–1872

    PubMed  CAS  Google Scholar 

  • Kreiter AK, Singer W (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 16:2381–2396

    PubMed  CAS  Google Scholar 

  • Lakatos P, Karmos G, Metha AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113

    PubMed  CAS  Google Scholar 

  • Lakatos P, O’Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE (2009) The leading sense: supramodal control of neurophysiological context by attention. Neuron 64:419–430

    PubMed  CAS  Google Scholar 

  • Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156

    PubMed  CAS  Google Scholar 

  • Lin SC, Gervasoni D, Nicolelis MA (2006) Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles. J Neurophysiol 96:3209–3219

    PubMed  Google Scholar 

  • Liu J, Newsome WT (2006) Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci 26:7779–7790

    PubMed  CAS  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    PubMed  CAS  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323–5328

    PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    PubMed  CAS  Google Scholar 

  • Martinez-Trujillo JC, Treue S (2004) Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr Biol 14:744–751

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322

    PubMed  CAS  Google Scholar 

  • Mishra J, Fellous JM, Sejnowski TJ (2006) Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron. Neural Netw 19:1329–1346

    PubMed  Google Scholar 

  • Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55:131–141

    PubMed  CAS  Google Scholar 

  • Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–888

    PubMed  CAS  Google Scholar 

  • Monosov IE, Trageser JC, Thompson KG (2008) Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field. Neuron 57:614–625

    PubMed  CAS  Google Scholar 

  • Montgomery SM, Buzsaki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci USA 104:14495–14500

    PubMed  CAS  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    PubMed  CAS  Google Scholar 

  • Munk MH, Roelfsema PR, Konig P, Engel AK, Singer W (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272:271–274

    PubMed  CAS  Google Scholar 

  • Ohara S, Crone NE, Weiss N, Lenz FA (2006) Analysis of synchrony demonstrates ‘pain networks’ defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 123:244–253

    PubMed  CAS  Google Scholar 

  • Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811

    PubMed  CAS  Google Scholar 

  • Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453:406–409

    PubMed  CAS  Google Scholar 

  • Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647

    PubMed  CAS  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    PubMed  CAS  Google Scholar 

  • Riehle A (2005) Preparation for action: one of the key functions of motir cortex. In: Riehle A, Vaadia E (eds) Motor cortex in voluntary movements: a distributed system for distributed functions, vol 1. CDC, Boca Raton, FL, pp 213–240

    Google Scholar 

  • Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 25:603–610

    PubMed  Google Scholar 

  • Rodriguez R, Kallenbach U, Singer W, Munk MH (2004) Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 24:10369–10378

    PubMed  CAS  Google Scholar 

  • Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161

    PubMed  CAS  Google Scholar 

  • Roelfsema PR, Tolboom M, Khayat PS (2007) Different processing phases for features, figures, and selective attention in the primary visual cortex. Neuron 56:785–792

    PubMed  CAS  Google Scholar 

  • Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290

    PubMed  CAS  Google Scholar 

  • Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615

    PubMed  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    PubMed  CAS  Google Scholar 

  • Sauseng P, Klimesch W, Freunberger R, Pecherstorfer T, Hanslmayr S, Doppelmayr M (2006) Relevance of EEG alpha and theta oscillations during task switching. Exp Brain Res 170:295–301

    PubMed  CAS  Google Scholar 

  • Scherberger H, Andersen RA (2007) Target selection signals for arm reaching in the posterior parietal cortex. J Neurosci 27:2001–2012

    PubMed  CAS  Google Scholar 

  • Scherberger H, Jarvis MR, Andersen RA (2005) Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 46:347–354

    PubMed  CAS  Google Scholar 

  • Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113

    PubMed  CAS  Google Scholar 

  • Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:9–18

    PubMed  CAS  Google Scholar 

  • Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P (2010) Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol 20:172–176

    PubMed  CAS  Google Scholar 

  • Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR (2003) Theta and gamma oscillations during encoding predict subsequent recall. J Neurosci 23(34):10809–10814

    PubMed  CAS  Google Scholar 

  • Sederberg PB, Gauthier LV, Terushkin V, Miller JF, Barnathan JA, Kahana MJ (2006a) Oscillatory correlates of the primacy effect in episodic memory. Neuroimage 32:1422–1431

    PubMed  Google Scholar 

  • Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, McCarthy DC, Brandt A, Tully MS, Kahana MJ (2006b) Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb Cortex 17:1190–1196

    PubMed  Google Scholar 

  • Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, Stanton PK, Foxe JJ (2008) A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proc Natl Acad Sci USA 105:4399–4404

    PubMed  CAS  Google Scholar 

  • Sejnowski TJ, Paulsen O (2006) Network oscillations: emerging computational principles. J Neurosci 26:1673–1676

    PubMed  CAS  Google Scholar 

  • Sheinberg DL, Logothetis NK (2001) Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J Neurosci 21:1340–1350

    PubMed  CAS  Google Scholar 

  • Siegel M, König P (2003) A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J Neurosci 23:4251–4260

    PubMed  CAS  Google Scholar 

  • Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719

    PubMed  CAS  Google Scholar 

  • Simons DJ, Rensink RA (2005) Change blindness: past, present, and future. Trends Cogn Sci 9:16–20

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci 21:RC177

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Mandon S, Freiwald WA, Kreiter AK (2004) Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720

    PubMed  Google Scholar 

  • Taylor K, Mandon S, Freiwald WA, Kreiter AK (2005) Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb Cortex 15:1424–1437

    PubMed  CAS  Google Scholar 

  • Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    PubMed  CAS  Google Scholar 

  • Tiesinga PH, Buia CI (2009) Spatial attention in area V4 is mediated by circuits in primary visual cortex. Neural Netw 22:1039–1054

    PubMed  Google Scholar 

  • Tiesinga PH, Sejnowski TJ (2004) Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural Comput 16:251–275

    PubMed  CAS  Google Scholar 

  • Tiesinga P, Sejnowski TJ (2009) Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63:727–732

    PubMed  CAS  Google Scholar 

  • Tiesinga PH, Fellous JM, Salinas E, Jose JV, Sejnowski TJ (2004) Inhibitory synchrony as a mechanism for attentional gain modulation. J Physiol Paris 98:296–314

    PubMed  Google Scholar 

  • Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci 9:97–107

    PubMed  CAS  Google Scholar 

  • Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60

    PubMed  CAS  Google Scholar 

  • Treue S, Martinez Trujillo JC (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–579

    PubMed  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    PubMed  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    PubMed  CAS  Google Scholar 

  • von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97:14748–14753

    Google Scholar 

  • Wannig A, Rodriguez V, Freiwald WA (2007) Attention to surfaces modulates motion processing in extrastriate area MT. Neuron 54:639–651

    PubMed  CAS  Google Scholar 

  • Womelsdorf T, Fries P (2007) The role of neuronal synchronization in selective attention. Curr Opin Neurobiol 17:154–160

    PubMed  CAS  Google Scholar 

  • Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736

    PubMed  CAS  Google Scholar 

  • Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    PubMed  CAS  Google Scholar 

  • Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63

    PubMed  CAS  Google Scholar 

  • Wrobel A, Ghazaryan A, Bekisz M, Bogdan W, Kaminski J (2007) Two streams of attention-dependent beta activity in the striate recipient zone of cat’s lateral posterior–pulvinar complex. J Neurosci 27:2230–2240

    PubMed  CAS  Google Scholar 

  • Wyart V, Tallon-Baudry C (2008) Neural dissociation between visual awareness and spatial attention. J Neurosci 28:2667–2679

    PubMed  CAS  Google Scholar 

  • Yamagishi N, Callan DE, Goda N, Anderson SJ, Yoshida Y, Kawato M (2003) Attentional modulation of oscillatory activity in human visual cortex. Neuroimage 20:98–113

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Science Foundation’s European Young Investigator Award program (P.F.), by the Netherlands Organization for Scientific Research (P.F. and T.W.), and by the Canadian Institutes of Health Research (T.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Fries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Womelsdorf, T., Fries, P. (2011). Rhythmic Neuronal Synchronization Subserves Selective Attentional Processing. In: Dehaene, S., Christen, Y. (eds) Characterizing Consciousness: From Cognition to the Clinic?. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18015-6_7

Download citation

Publish with us

Policies and ethics