Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 831))

  • 1593 Accesses

Abstract

The problem of many-body interactions—or, equivalently, many degrees of freedom—can be tackled from different points of view, since it appears in many different physical and chemical contexts. Here, in particular, we are going to face it from a chemical physics point of view. The application of the Schrödinger equation to discern electronic structural properties of materials is commonly regarded as quantum chemistry (i.e., electronic structure and its methodology), while the dynamical and statistical part of the theoretical chemistry are the subjects of chemical physics. In this chapter, first we introduce the Born-Oppenheimer approximation used both to devise electronic structure methodologies and to deal with many degree-of-freedom systems within the open quantum theory scenario. Then, a brief overview on density functional theory, both time-independent and time-dependent, with special emphasis on the quantum hydrodynamic approach, strongly connected to Bohmian mechanics (and more specifically to Madelung’s quantum hydrodynamics) is presented. Finally, a description of Hirschfelder’s approach to quantum equations of change is reported, which are a precedent to the so-called weak values. The chapter is ended with a general discussion on the possibility to connect particular sectors of the initial state with individual features of the final state by means of probability tubes defined following the prescriptions of Bohmian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanz, A.S., Giménez, X., Bofill-Vila, J.M., Miret-Artés, S.: Time-dependent density functional theory from a Bohmian perspective. In: Chattaraj, P.K. (ed.) Chemical Reactivity Theory, pp. 105–119. Taylor & Francis, New York (2009)

    Google Scholar 

  2. Sanz, A.S., Miret-Artés, S.: The role of trajectories in quantum chemistry and chemical physics. In: Oriols, X., Mompart, J. (eds.) Applied Bohmian Mechanics from Nanoscale Systems to Cosmology, pp. 221–287. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  3. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    MATH  Google Scholar 

  4. Uzer, T., Farrelly, D., Milligan, J.A., Raines, P.E., Skelton, J.P.: Celestial mechanics on a microscopic scale. Science 253, 42–48 (1991)

    ADS  Google Scholar 

  5. Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Longman Scientific & Technical, Essex (1983)

    Google Scholar 

  6. Levine, I.N.: Quantum Chemistry, 5th edn. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  7. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry. Dover, Mineola (1996)

    Google Scholar 

  8. Fulde, P.: Electron Correlations in Molecules and Solids, 3rd edn. Springer, Berlin (2002)

    Google Scholar 

  9. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  10. Kaplan, I.G.: Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. Wiley, Chichester (2006)

    Google Scholar 

  11. Zhang, J.Z.H.: Theory and Application of Quantum Molecular Dynamics. World Scientific, Singapore (1999)

    Google Scholar 

  12. Tannor, D.J.: Introduction to Quantum Mechanics. University Science Books, Sausalito (2006)

    Google Scholar 

  13. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  14. McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)

    Google Scholar 

  15. Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  16. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  17. Born, M., Oppenheimer, J.R.: Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457–484 (1927)

    Google Scholar 

  18. Head-Gordon, M.: Quantum chemistry and molecular processes. J. Phys. Chem. 100, 13213–13225 (1996)

    Google Scholar 

  19. Shaik, S.S., Hiberty, P.C.: A Chemist’s Guide to Valence Bond Theory. Wiley-Interscience, New Jersey (2007)

    Google Scholar 

  20. Pauling, L.: The application of the quantum mechanics to the structure of the hydrogen molecule and hydrogen molecule-ion and to related problems. Chem. Rev. 5, 173–213 (1928)

    Google Scholar 

  21. Pauling, L.: The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931)

    Google Scholar 

  22. Blum, K.: Density Matrix Theory and Applications. Plenum Press, New York (1981)

    MATH  Google Scholar 

  23. Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philol. Soc. 23, 542–548 (1927)

    ADS  MATH  Google Scholar 

  24. Fermi, E.: Un metodo statistico per la determinazione di alcune prioprietà dell’atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)

    Google Scholar 

  25. Marques, M.A.L., Gross, E.K.U.: Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55, 427–455 (2004)

    ADS  Google Scholar 

  26. Botti, S., Schindlmayr, A., Del Sole, R., Reining, L.: Time-dependent density-functional theory for extended systems. Rep. Prog. Phys. 70, 357–407 (2007)

    ADS  Google Scholar 

  27. Nakatsuji, H.: Equation for direct determination of density matrix. Phys. Rev. A 14, 41–50 (1976)

    ADS  Google Scholar 

  28. Nakatsuji, H., Yasuda, K.: Direct determination of the quantum-mechanical density matrix using the density equation. Phys. Rev. Lett. 76, 1039–1042 (1996)

    ADS  Google Scholar 

  29. Yasuda, K., Nakatsuji, H.: Direct determination of the quantum-mechanical density matrix using the density equation. II. Phys. Rev. A 56, 2648–2657 (1997)

    ADS  Google Scholar 

  30. Valdemoro, C.: Approximating the 2nd-order reduced density-matrix in terms of the first-order one. Phys. Rev. A 45, 4462–4467 (1992)

    ADS  Google Scholar 

  31. Valdemoro, C.: Contracting and calculating traces over the N-electron space: Two powerful tools for obtaining averages. Int. J. Quant. Chem. 60, 131–139 (1996)

    Google Scholar 

  32. Valdemoro, C., Tel, L.M., Alcoba, D.R., Pérez-Romero, E., Casquero, F.J.: Some basic properties of the correlation matrices. Int. J. Quant. Chem. 90, 1555–1561 (2002)

    Google Scholar 

  33. Alcoba, D.R., Valdemoro, C.: Spin structure and properties of the correlation matrices corresponding to pure spin states: Controlling the S-representability of these matrices. Int. J. Quant. Chem. 102, 629–644 (2005)

    ADS  Google Scholar 

  34. Davidson, E.R.: Reduced Density Matrices in Quantum Chemistry. Academic Press, New York (1976)

    Google Scholar 

  35. Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge. Springer, New York (2000)

    Google Scholar 

  36. Cioslowski, J. (ed.): Many-Electron Densities and Reduced Density Matrices. Kluwer, Dordrecht (2000)

    Google Scholar 

  37. Mazziotti, D.A.: Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions. Phys. Rev. A 57, 4219–4234 (1998)

    ADS  Google Scholar 

  38. Mazziotti, D.A.: Pursuit of N-representability for the contracted Schrödinger equation through density-matrix reconstruction. Phys. Rev. A 60, 3618–3626 (1999)

    ADS  Google Scholar 

  39. Mazziotti, D.A.: Anti-Hermitian contracted Schrödinger equation: Direct determination of the two-electron reduced density matrices of many-electron molecules. Phys. Rev. Lett. 97, 143002(1–4) (2006)

    ADS  Google Scholar 

  40. Mazziotti, D.A. (ed.): Reduced-Density-Matrix Mechanics with Applications to Many-Electron Atoms and Molecules. Advances in Chemical Physics, vol. 134. Wiley, New York (2007)

    Google Scholar 

  41. Wyatt, R.E.: Quantum Dynamics with Trajectories. Springer, New York (2005)

    MATH  Google Scholar 

  42. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    ADS  MATH  Google Scholar 

  43. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3978 (1993)

    ADS  Google Scholar 

  44. Sommerer, J.C., Ku, H.-C., Gilreath, H.E.: Experimental evidence for chaotic scattering in a fluid wake. Phys. Rev. Lett. 77, 5055–5058 (1996)

    ADS  Google Scholar 

  45. Sanz, A.S., Miret-Artés, S.: Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking. Am. J. Phys. 80, 525–533 (2012)

    ADS  Google Scholar 

  46. Khatua, M., Chakraborty, D., Chattaraj, P.K.: Density dynamics in some quantum systems. Int. J. Quant. Chem. 113, 1747–1771 (2013)

    Google Scholar 

  47. Landau, L.: The theory of superfluidity of helium II. Phys. Rev. 60, 356–358 (1941)

    ADS  MATH  Google Scholar 

  48. London, F.: Planck’s constant and low temperature transfer. Rev. Mod. Phys. 17, 310–320 (1945)

    ADS  Google Scholar 

  49. McCullough, E.A., Wyatt, R.E.: Quantum dynamics of the collinear (H, H2) reaction. J. Chem. Phys. 51, 1253–1254 (1969)

    ADS  Google Scholar 

  50. McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H+H2 reaction. I. Probability density and flux. J. Chem. Phys. 54, 3578–3591 (1971)

    ADS  Google Scholar 

  51. McCullough, E.A., Wyatt, R.E.: Dynamics of the collinear H+H2 reaction. II. Energy analysis. J. Chem. Phys. 54, 3592–3600 (1971)

    ADS  Google Scholar 

  52. Hirschfelder, J.O., Christoph, A.C., Palke, W.E.: Quantum mechanical streamlines. I. Square potential barrier. J. Chem. Phys. 61, 5435–5456 (1974)

    ADS  Google Scholar 

  53. Hirschfelder, J.O., Goebel, C.J., Bruch, L.W.: Quantized vortices around wavefunction nodes. II. J. Chem. Phys. 61, 5456–5459 (1974)

    ADS  Google Scholar 

  54. Hirschfelder, J.O., Tang, K.T.: Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision. J. Chem. Phys. 64, 760–786 (1976)

    ADS  Google Scholar 

  55. Magalinskii, V.B.: Dynamical model in the theory of the Brownian motion. Sov. Phys. JETP-USSR 9, 1381–1382 (1959)

    MathSciNet  Google Scholar 

  56. Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)

    ADS  Google Scholar 

  57. Caldeira, A.O., Leggett, A.J.: Quantum tunneling in a dissipative system. Ann. Phys. 149, 374–456 (1983)

    ADS  Google Scholar 

  58. Billing, G.D.: Classical path method in inelastic and reactive scattering. Int. Rev. Phys. Chem. 13, 309–335 (1994)

    Google Scholar 

  59. Tully, J.C.: Nonadiabatic molecular-dynamics. Int. J. Quant. Chem. 25, 299–309 (1991)

    Google Scholar 

  60. Miller, W.H.: Semiclassical theory of atom-diatom collisions: Path integrals and the classical S matrix. J. Chem. Phys. 53, 1949–1959 (1970)

    MathSciNet  ADS  Google Scholar 

  61. Miller, W.H.: Classical S matrix: Numerical application to inelastic collisions. J. Chem. Phys. 53, 3578–3587 (1970)

    ADS  Google Scholar 

  62. Miller, W.H.: Quantum and semiclassical theory of chemical reaction rates. Faraday Discuss. 110, 1–21 (1998)

    ADS  Google Scholar 

  63. Miller, W.H.: The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105, 2942–2955 (2001)

    Google Scholar 

  64. Miller, W.H., Jansen op de Haar, B.M.D.D.: A new basis set method for quantum scattering calculations. J. Chem. Phys. 86, 6213–6220 (1987)

    MathSciNet  ADS  Google Scholar 

  65. Zhang, J.Z.H., Chu, S.-I., Miller, W.H.: Quantum scattering via the S-matrix version of the Kohn variational principle. J. Chem. Phys. 88, 6233–6239 (1988)

    ADS  Google Scholar 

  66. Sepúlveda, M.A., Grossmann, F.: Time-dependent semiclassical mechanics. Adv. Chem. Phys. 96, 191–304 (1996)

    Google Scholar 

  67. Makri, N.: Quantum dissipative dynamics: A numerically exact methodology. J. Phys. Chem. A 102, 4414–4427 (1998)

    ADS  Google Scholar 

  68. Ankerhold, J., Salteer, M., Pollak, E.: A study of the semiclassical initial value representation at short times. J. Chem. Phys. 116, 5925–5932 (2002)

    ADS  Google Scholar 

  69. Pollak, E., Shao, J.: Systematic improvement of initial value representations of the semiclassical propagator. J. Phys. Chem. A 107, 7112–7117 (2003)

    Google Scholar 

  70. Pollak, E., Miret-Artés, S.: Thawed semiclassical IVR propagators. J. Phys. A 37, 9669–9676 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  71. Nielsen, S., Kapral, R., Ciccotti, G.: Non-adiabatic dynamics in mixed quantum-classical systems. J. Stat. Phys. 101, 225–242 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  72. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    ADS  Google Scholar 

  73. Kuhne, T.D., Krack, M., Mohamed, F.R., Parrinello, M.: Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401(1–4) (2007)

    ADS  Google Scholar 

  74. Hirschfelder, J.O.: Quantum mechanical equations of change. I. J. Chem. Phys. 68, 5151–5162 (1978)

    MathSciNet  ADS  Google Scholar 

  75. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990)

    MathSciNet  ADS  Google Scholar 

  76. Carmichael, H.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    MATH  Google Scholar 

  77. Percival, I.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  78. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964)

    MathSciNet  ADS  Google Scholar 

  79. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)

    MathSciNet  ADS  Google Scholar 

  80. See, for example: Proceedings of the VIth International Conference on the Applications of Density Functional Theory, Paris, France, 29 Aug.–1 Sept. 1995. Int. J. Quantum Chem. 61, 181–196 (1997)

    Google Scholar 

  81. McWeeny, R.: Density functions and density functionals. Philos. Mag. B 69, 727–735 (1994)

    ADS  Google Scholar 

  82. Illas, F., Moreira, I.P.R., Bofill, J.M., Filatov, M.: Extent and limitations of density-functional theory in describing magnetic systems. Phys. Rev. B 70, 132414(1–4) (2004)

    ADS  Google Scholar 

  83. Illas, F., Moreira, I.P.R., Bofill, J.M., Filatov, M.: Spin symmetry requirements in density functional theory: The proper way to predict magnetic coupling constants in molecules and solids. Theor. Chem. Acc. 116, 587–597 (2006)

    Google Scholar 

  84. Mazziotti, D.A.: Purification of correlated reduced density matrix. Phys. Rev. E 65, 026704(1–9) (2002)

    ADS  Google Scholar 

  85. Valdemoro, C., Alcoba, D.R., Tel, L.M.: Recent developments in the contracted Schrödinger equation method: Controlling he N-representability of the second-order reduced density matrix. Int. J. Quant. Chem. 93, 212–222 (2003)

    Google Scholar 

  86. Maitra, N.T., Burke, K.: On the Floquet formulation of time-dependent density functional theory. Chem. Phys. Lett. 359, 237–240 (2002)

    ADS  Google Scholar 

  87. Maitra, N.T., Burke, K.: Comment on “Analysis of Floquet formulation of time-dependent density-functional theory”. Chem. Phys. Lett. 441, 167–169 (2007)

    ADS  Google Scholar 

  88. Samal, P., Harbola, M.K.: Analysis of Floquet formulation of time-dependent density-functional theory. Chem. Phys. Lett. 433, 204–210 (2006)

    ADS  Google Scholar 

  89. Sahni, V.: Quantal Density Functional Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  90. Bartolotti, L.J., Mollmann, J.C.: 4th order time-dependent variation perturbation-theory based on the hydrodynamic analogy. Mol. Phys. 38, 1359–1365 (1979)

    ADS  Google Scholar 

  91. Bartolotti, L.J.: Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional. Phys. Rev. A 24, 1661–1667 (1981)

    MathSciNet  ADS  Google Scholar 

  92. Bartolotti, L.J.: Time-dependent Kohn-Sham density-functional theory. Phys. Rev. A 26, 2243–2244 (1982)

    ADS  Google Scholar 

  93. Ghosh, S.K., Deb, B.M.: Quantum fluid dynamics of many-electron systems in three-dimensional space. Int. J. Quant. Chem. 22, 871–888 (1982)

    Google Scholar 

  94. Deb, B.M., Ghosh, S.K.: Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework. J. Chem. Phys. 77, 342–348 (1982)

    ADS  Google Scholar 

  95. Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)

    ADS  Google Scholar 

  96. Bloch, F.: Bremsvermögen von Atomen mit mehreren Elektronen. Z. Phys. 81, 363–376 (1933)

    ADS  MATH  Google Scholar 

  97. Deb, B.M., Chattaraj, P.K.: Quantum fluid density functional theory of time-dependent phenomena—Ion atom collisions. Chem. Phys. Lett. 148, 550–556 (1988)

    ADS  Google Scholar 

  98. Deb, B.M., Chattaraj, P.K.: Density-functional and hydrodynamical approach to ion-atom collisions through a new generalized nonlinear Schrödinger equation. Phys. Rev. A 39, 1696–1713 (1989)

    ADS  Google Scholar 

  99. Deb, B.M., Chattaraj, P.K., Mishra, S.: Time-dependent quantum-fluid density-functional study of high-energy proton-helium collisions. Phys. Rev. A 43, 1248–1257 (1991)

    ADS  Google Scholar 

  100. Dey, B.Kr., Deb, B.M.: Time-dependent quantum fluid-dynamics of the photoionization of the He atom under an intense laser field. Int. J. Quant. Chem. 56, 707–732 (1995)

    Google Scholar 

  101. Dey, B.Kr., Deb, B.M.: A theoretical study of the high-order harmonics of a 200 nm laser from H−2 and HeH+. Chem. Phys. Lett. 276, 157–163 (1997)

    ADS  Google Scholar 

  102. Dey, B.Kr., Deb, B.M.: Stripped ion-helium atom collision dynamics within a time-dependent quantum fluid density functional theory. Int. J. Quant. Chem. 67, 251–271 (1998)

    Google Scholar 

  103. Dey, B.Kr., Deb, B.M.: Direct ab initio calculation of ground-state electronic energies and densities for atoms and molecules through a time-dependent single hydrodynamical equation. J. Chem. Phys. 110, 6229–6239 (1999)

    ADS  Google Scholar 

  104. Lawes, G.P., March, N.H.: Approximate differential-equation for calculating the electron-density in closed shell atoms and in molecules. Phys. Scr. 21, 402–408 (1980)

    ADS  Google Scholar 

  105. Deb, B.M., Ghosh, S.K.: New method for the direct calculation of electron-density in many-electron systems. 1. Application to closed-shell atoms. Int. J. Quant. Chem. 23, 1–26 (1983)

    Google Scholar 

  106. Levy, M., Pardew, J.P., Sahni, V.: Exact differential equation for the density and ionization energy of a many-particle system. Phys. Rev. A 30, 2745–2748 (1984)

    ADS  Google Scholar 

  107. March, N.H.: The local potential determining the square root of the ground-state electron-density of atoms and molecules from the Schrödinger equation. Phys. Lett. A 113, 476–478 (1986)

    ADS  Google Scholar 

  108. Hunter, G.: The exact one-electron model of molecular-structure. Int. J. Quant. Chem. 29, 197–204 (1986)

    Google Scholar 

  109. Levy, M., Ou-Yang, H.: Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional. Phys. Rev. A 38, 625–629 (1988)

    ADS  Google Scholar 

  110. McClendon, M.: Real-space diffusion theory of multiparticle quantum systems. Phys. Rev. A 38, 5851–5855 (1988)

    ADS  Google Scholar 

  111. Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73, 2871–2883 (1980)

    MathSciNet  ADS  Google Scholar 

  112. Gomes, J.A.N.F.: Delocalized magnetic currents in benzene. J. Chem. Phys. 78, 3133–3139 (1983)

    ADS  Google Scholar 

  113. Gomes, J.A.N.F.: Topological elements of the magnetically induced orbital current densities. J. Chem. Phys. 78, 4585–4591 (1983)

    ADS  Google Scholar 

  114. McWeeny, R.: Currents, kinetic energy, and molecular magnetism. Proc. Indian Acad. Sci. 96, 263–273 (1986)

    Google Scholar 

  115. Lazzeretti, P., Zanasi, R.: Inconsistency of the ring-current model for the cyclopropenyl cation. Chem. Phys. Lett. 80, 533–536 (1981)

    ADS  Google Scholar 

  116. Lazzeretti, P., Rossi, E., Zanasi, R.: Singularities of magnetic-field induced electron current density: A study of the ethylene molecule. Int. J. Quant. Chem. 25, 929–940 (1984)

    Google Scholar 

  117. Lazzeretti, P., Rossi, E., Zanasi, R.: Magnetic properties and induced current density in acetylene. Int. J. Quant. Chem. 25, 1123–1134 (1984)

    Google Scholar 

  118. Lazzeretti, P.: Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 36, 1–88 (2000)

    Google Scholar 

  119. Pelloni, S., Faglioni, F., Zanasi, R., Lazzeretti, P.: Topology of magnetic-field-induced current-density field in diatropic monocyclic molecules. Phys. Rev. A 74, 012506(1–8) (2006)

    ADS  Google Scholar 

  120. Pelloni, S., Lazzeretti, P., Zanasi, R.: Spatial ring current model of the [2.2]paracyclophane molecule. J. Phys. Chem. A 111, 3110–3123 (2007)

    Google Scholar 

  121. Pelloni, S., Lazzeretti, P., Zanasi, R.: Topological models of magnetic field induced current density field in small molecules. Theor. Chem. Acc. 123, 353–364 (2009)

    Google Scholar 

  122. Pelloni, S., Lazzeretti, P.: Spatial ring current model for the prismane molecule. J. Phys. Chem. A 112, 5175–5186 (2008)

    Google Scholar 

  123. Pelloni, S., Lazzeretti, P.: Topology of magnetic-field induced electron current density in the cubane molecule. J. Chem. Phys. 128, 194305(1–10) (2008)

    ADS  Google Scholar 

  124. Pelloni, S., Lazzeretti, P.: Ring current models for acetylene and ethylene molecules. Chem. Phys. 356, 153–163 (2009)

    ADS  Google Scholar 

  125. García Cuesta, I., Sánchez de Merás, A., Pelloni, S., Lazzeretti, P.: Understanding the ring current effects on magnetic shielding of hydrogen and carbon nuclei in naphthalene and anthracene. J. Comput. Chem. 30, 551–564 (2009)

    Google Scholar 

  126. Pelloni, S., Lazzeretti, P.: Stagnation graphs and topological models of magnetic-field induced electron current density for some small molecules in connection with their magnetic symmetry. Int. J. Quant. Chem. 111, 356–367 (2011)

    Google Scholar 

  127. Berger, R.J.F., Rzepa, H.S., Scheschkewitz, D.: Ringströme im dismutationsaromatischen Si6R6. Angew. Chem. 122, 10203–10206 (2010)

    Google Scholar 

  128. Berger, R.J.F., Rzepa, H.S., Scheschkewitz, D.: Ring currents in the dismutational aromatic Si6R6. Angew. Chem., Int. Ed. Engl. 49, 10006–10009 (2010)

    Google Scholar 

  129. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143–182 (1952)

    MathSciNet  ADS  MATH  Google Scholar 

  130. Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fields. Prog. Theor. Phys. 9, 187–222 (1953)

    MathSciNet  ADS  MATH  Google Scholar 

  131. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)

    ADS  Google Scholar 

  132. Hiley, B.J.: Weak values: Approach through the Clifford and Moyal algebras. J. Phys. Conf. Ser. 361, 012014(1–11) (2012)

    ADS  Google Scholar 

  133. Uiberacker, M., Uphues, T., Schultze, M., Verhoef, A.J., Yakovlev, V., Kling, M.F., Rauschenberger, J., Kabachnik, N.M., Schröder, H., Lezius, M., Kompa, K.L., Muller, H.G., Vrakking, M.J.J., Hendel, S., Kleineberg, U., Heinzmann, U., Drescher, M., Krausz, F.: Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007)

    ADS  Google Scholar 

  134. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263(1–5) (2011)

    ADS  Google Scholar 

  135. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    MATH  Google Scholar 

  136. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: A trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    ADS  Google Scholar 

  137. Sanz, A.S., Miret-Artés, S.: Selective adsorption resonances: Quantum and stochastic approaches. Phys. Rep. 451, 37–154 (2007)

    ADS  Google Scholar 

  138. Pollak, E., Child, M.S.: Classical mechanics of a collinear exchange reaction: A direct evaluation of the reaction probability and product distribution. J. Chem. Phys. 73, 4373–4380 (1980)

    MathSciNet  ADS  Google Scholar 

  139. Pollak, E.: Classical analysis of collinear light atom transfer reactions. J. Chem. Phys. 78, 1228–1236 (1983)

    MathSciNet  ADS  Google Scholar 

  140. Egger, J.: Volume conservation in phase space: A fresh look at numerical integration schemes. Am. Meteorol. Soc. 124, 1955–1964 (1996)

    Google Scholar 

  141. Sommer, M., Reich, S.: Phase space volume conservation under space and time discretization schemes for the shallow-water equations. Am. Meteorol. Soc. 138, 4229–4236 (2010)

    Google Scholar 

  142. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, Singapore (1968)

    Google Scholar 

  143. Sanz, A.S., Miret-Artés, S.: Quantum trajectories in elastic atom-surface scattering: Threshold and selective adsorption resonances. J. Chem. Phys. 122, 014702(1–12) (2005)

    ADS  Google Scholar 

  144. Sanz, A.S., Giménez, X., Bofill-Vila, J.M., Miret-Artés, S.: Understanding chemical reactions within a generalized Hamilton–Jacobi framework. Chem. Phys. Lett. 478, 89–96 (2009); Erratum. Chem. Phys. Lett. 488, 235–236 (2010)

    ADS  Google Scholar 

  145. Sanz, A.S., López-Durán, D., González-Lezana, T.: Investigating transition state resonances in the time domain by means of Bohmian mechanics: The F+HD reaction. Chem. Phys. 399, 151–161 (2012)

    ADS  Google Scholar 

  146. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    MathSciNet  ADS  MATH  Google Scholar 

  147. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  148. Bittner, E.R.: Quantum initial value representations using approximate Bohmian trajectories. J. Chem. Phys. 119, 1358–1964 (2003)

    ADS  Google Scholar 

  149. Zhao, Y., Makri, N.: Bohmian versus semiclassical description of interference phenomena. J. Chem. Phys. 119, 60–67 (2003)

    ADS  Google Scholar 

  150. Liu, J., Makri, N.: Monte Carlo Bohmian dynamics from trajectory stability properties. J. Phys. Chem. A 108, 5408–5416 (2004)

    Google Scholar 

  151. Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)

    ADS  Google Scholar 

  152. Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys. Condens. Matter 14, 6109–6145 (2002)

    ADS  Google Scholar 

  153. Sanz, A.S., Miret-Artés, S.: On the unique mapping relationship between initial and final quantum states. Ann. Phys. 339, 11–21 (2013)

    ADS  Google Scholar 

  154. Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A 41, 435303(1–23) (2008)

    MathSciNet  ADS  Google Scholar 

  155. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol. 850. Springer, Berlin (2012)

    MATH  Google Scholar 

  156. Coffey, T.M., Wyatt, R.E., Schieve, W.C.: Monte Carlo generation of Bohmian trajectories. J. Phys. A 41, 335304(1–9) (2008)

    MathSciNet  Google Scholar 

  157. Brandt, S., Dahmen, H., Gjonaj, E., Stroh, T.: Quantile motion and tunneling. Phys. Lett. A 249, 265–270 (1998)

    ADS  Google Scholar 

  158. Coffey, T.M., Wyatt, R.E., Schieve, W.C.: Quantum trajectories from kinematic considerations. J. Phys. A 43, 335301(1–14) (2010)

    MathSciNet  Google Scholar 

  159. Fonseca-Guerra, C., Handgraaf, J.W., Baerends, E.J., Bickelhaupt, F.M.: Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 25, 189–210 (2004)

    Google Scholar 

  160. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1979)

    ADS  Google Scholar 

  161. Ballentine, L.E.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  162. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, New York (2001)

    Google Scholar 

  163. Sanz, A.S., Miret-Artés, S.: Setting up tunneling conditions by means of Bohmian mechanics. J. Phys. A 44, 485301(1–17) (2011)

    MathSciNet  ADS  Google Scholar 

  164. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863–867 (1926)

    ADS  MATH  Google Scholar 

  165. Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803–827 (1926)

    ADS  Google Scholar 

  166. Born, M.: Das Adiabatenprinzip in der Quantenmechanik. Z. Phys. 40, 167–192 (1926)

    ADS  MATH  Google Scholar 

  167. Zurek, W.H., Wheeler, J.A.: Quantum Theory of Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  168. Landsman, N.P.: Born rule and its interpretation. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, pp. 64–70. Springer, Berlin (2009)

    Google Scholar 

  169. Brumer, P., Gong, J.: Born rule in quantum and classical mechanics. Phys. Rev. A 73, 052109(1–4) (2006)

    MathSciNet  ADS  Google Scholar 

  170. Sanz, A.S., Miret-Artés, S.: A causal look into the quantum Talbot effect. J. Chem. Phys. 126, 234106(1–11) (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2014). Many-Body Systems and Quantum Hydrodynamics. In: A Trajectory Description of Quantum Processes. II. Applications. Lecture Notes in Physics, vol 831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17974-7_8

Download citation

Publish with us

Policies and ethics