Skip to main content

Assessment of Chemical Hazards in Sick Building Syndrome Situations: Determination of Concentrations and Origin of VOCs in Indoor Air Environments by Dynamic Sampling and TD-GC/MS Analysis

  • Chapter
  • First Online:
Sick Building Syndrome

Abstract

The term sick building syndrome (SBS) is used to describe situations in which building occupants experience a series of varied symptoms that appear to be linked to time spent in the building. The causes of SBS remain unknown, but some factors have been described to contribute to SBS, such as outdoor and indoor chemical contaminants (e.g. volatile organic compounds (VOCs)). The knowledge of VOCs concentrations is very important to define air quality and toxicity; hence, a methodology for identifying and determining air quality and origin of VOCs in indoor air has been developed. The methodology is based on the retention of VOCs in glass multi-sorbent tubes self-filled with Carbotrap, Carbopack X and Carboxen 569 connected to specially designed LCMA-UPC pump samplers. Samples can be obtained during 24-h samplings, working hours samplings (8 h) and, in addition to that, the activation of samplers may also be done by the inhabitants of the dwelling when they perceive odorous and/or discomfort episodes. The analysis is performed by Automatic Thermal Desorption (ATD) coupled with capillary Gas Chromatography (GC)/ Mass Spectrometry Detector (MSD). Thus, an accurate determination of all VOCs present in the samples can be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken MD, Okun MF (1992) Quantification of wastewater odours by the affected public. Water Environ Res 64:720–727.

    Google Scholar 

  • Ana G, Shendell DG, Odeshi TA, Sridhar MKC (2009) Identification and initial characterization of prominent air pollution sources and respiratory health at secondary schools in Ibadan, Nigeria. J Asthma 46:670–676.

    Article  Google Scholar 

  • Andersson K, Bakke JV, Bjørseth O, Bornehag C-G, Clausen G, Hongslo JK, Kjellman M, Kjærgaard S, Levy F, Mølhave L, Skerfving S, Sundell J (1997) TVOC and health in non-industrial indoor environments. Indoor Air 7:78–91.

    Article  Google Scholar 

  • Ashmore MR, Dimitroulopoulou C (2009) Personal exposure of children to air pollution. Atmos Environ 43:128–141.

    Article  Google Scholar 

  • ASHRAE (2007) Ventilation for Acceptable Indoor Air Quality. ANSI/ASHRAE Standard 62.1.2007. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc, Atlanta, GA.

    Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101.

    Article  Google Scholar 

  • Baek S-O, Kim Y-S, Perry R (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas-indoor/outdoor relationships. Atmos Environ 31:529–544.

    Article  Google Scholar 

  • Barro R, Regueiro J, Llompart M, Garcia-Jares C (2009) Analysis of industrial contaminants in indoor air: Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A 1216:540–566.

    Article  Google Scholar 

  • Bascom R, Kesavanathan J, Swift DL (1995) Human susceptibility to indoor contaminants. Occup Med 10:119–132.

    Google Scholar 

  • Batterman S, Hatzivasilis G, Jia C (2006) Concentrations and emissions of gasoline and other vapors from residential vehicle garages. Atmos Environ 40:1828–1844.

    Article  Google Scholar 

  • Batterman S, Jia C, Hatzivasilis G (2007) Migration of volatile organic compounds from attached garages to residences: A major exposure source. Environ Res 104:224–240.

    Article  Google Scholar 

  • Batterman S, Matts T, Kalliokoski P, Barnett E (2002) Low flow active and passive sampling of VOCs using thermal desorption tubes: Theory and application at an offset printing facility. J Environ Monit 4:361–370.

    Article  Google Scholar 

  • Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J, Reijula K, Reponen T, Seltzer J, Smith A, Tarlo SM (2008) The health effects of nonindustrial indoor air pollution. J Allergy Clin Immun 121:585–591.

    Article  Google Scholar 

  • Bornehag C-G, Stridh G (2000) Volatile organic compounds (VOC) in the Swedish housing stock. Proc Health Build 1:437–442.

    Google Scholar 

  • Brown S, Frankel AM, Hafner HR (2007) Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos Environ 41:227–237.

    Article  Google Scholar 

  • California Environmental Protection Agency (2010) Office of Environmental Health Hazard Assessment, Sacramento, CA; http://www.oehha.org/air.html. Accessed May 2010.

  • Camel V, Caude M (1995) Trace enrichment methods for the determination of organic pollutants in ambient air. J Chromatogr A 710:3–19.

    Article  Google Scholar 

  • Chan W, Lee S-C, Chen Y, Mak B, Wong K, Chan C-S, Zheng C, Guo X (2009) Indoor air quality in new hotels’ guest rooms of the major world factory region. Int J Hosp Manag 28:26–32.

    Article  Google Scholar 

  • Cheong KW, Chong KY (2001) Development and application of an indoor air quality audit to an air-conditioned building in Singapore. Build Environ 36:181–188.

    Article  Google Scholar 

  • Chun C, Sung K, Kim E, Park J (2010) Self-reported multiple chemical sensitivity symptoms and personal volatile organic compounds exposure concentrations in construction workers. Build Environ 45:901–906.

    Article  Google Scholar 

  • Clements-Croome DJ, Awbi HB, Bakó-Biró Z, Kochhar N, Williams M (2008) Ventilation rates in schools. Build Environ 43:362–367.

    Article  Google Scholar 

  • Dąbrowski A (2001) Adsorption-from theory to practice. Adv Colloid Interface Sci 93:135–224.

    Article  Google Scholar 

  • Dalton P (2003) Upper airway irritation, odor perception and health risk Due To airborne chemicals. Toxicol Lett 140–141:239–248.

    Article  Google Scholar 

  • Demeestere K, Dewulf J, De Roo K, De Wispelaere P, Van Langenhove H (2008a) Quality control in quantification of volatile organic compounds analysed by thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1186:348–357.

    Article  Google Scholar 

  • Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H (2008b) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43:406–414.

    Article  Google Scholar 

  • Demeestere K, Dewulf J, De Witte B, Van Langenhove H (2007) Sample preparation for the analysis of volatile organic compounds in air and water matrices. J Chromatogr A 1153:130–144.

    Article  Google Scholar 

  • Desauziers V (2004) Traceability of pollutant measurements for ambient air monitoring. TrAC Trends Anal Chem 23:252–260.

    Article  Google Scholar 

  • Destaillats H, Maddalena RL, Singer BC, Hogdson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmos Environ 42:1371–1388.

    Article  Google Scholar 

  • Dettmer K, Engewald W (2002) Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal Bioanal Chem 373:490–500.

    Article  Google Scholar 

  • Dettmer K, Engewald W (2003) Ambient air analysis of volatile organic compounds using adsorptive enrichment. Chromatogr Suppl 57:S339–S347.

    Article  Google Scholar 

  • Donaldson JD, Grimes SM, Mehta L, Jafari AJ (2003) Application of thermal desorption to the development of a gas chromatographic/mass spectrometric method for the determination of toluene, chlorinated aromatic hydrocarbons, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combustion emissions. J AOAC Int 86:39–43.

    Google Scholar 

  • Duarte-Davidson R, Courage C, Rushton L, Levy L (2001) Benzene in the environment: An assessment of the potential risks to the health of the population. J Occ Env Med 58:2–13.

    Article  Google Scholar 

  • EC (European Commission) (1989) Sick Building Syndrome. Indoor air quality & its impact on man (Report No. 4). Office for Official Publication of the European Communities, Luxembourg.

    Google Scholar 

  • EC (European Commission) (1992) Ventilation Requirements in Buildings. Indoor air quality & its impact on man (Report No. 11). Office for Official Publication of the European Communities, Luxembourg.

    Google Scholar 

  • EC (European Commission) (1997a) Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor air quality & its impact on man (Report No. 19). Office for Official Publication of the European Communities, Luxembourg.

    Google Scholar 

  • EC (European Commission) (1997b) Evaluation of VOC Emissions from Building Products. Indoor air quality & its impact on man (Report No. 18). Office for Official Publication of the European Communities, Luxembourg.

    Google Scholar 

  • EC (European Commission) (2004) Summary on recommendations and management options. Joint Research Centre, Institute for Health and Consumer Protection Physical and Chemical Exposure Unit, Ispra, Italy.

    Google Scholar 

  • EC (European Commission) (2005) Final Report. The INDEX Project. Critical Appraisal of the Setting and Implementation of Indoor Exposure Limits in the EU. Joint Research Centre, Institute for Health and Consumer Protection Physical and Chemical Exposure Unit, Ispra, Italy.

    Google Scholar 

  • Eberlein-Königa B, Przybillaa B, Kühnla P, Golling G, Gebefügi I, Ring J (2002) Multiple chemical sensitivity (MCS) and others: Allergological, environmental and psychological investigations in individuals with indoor air related complaints. Int J Hyg Envir Health 205:213–220.

    Article  Google Scholar 

  • Edwards RD, Jantunen MJ (2001) Benzene exposure in Helsinki, Finland. Atoms Environ 35:1411–1420.

    Article  Google Scholar 

  • Edwards RD, Jurvelin J, Koinstinen K, Saarela K, Jantunen M (2001) VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland. Atmos Environ 35:4829–4841.

    Article  Google Scholar 

  • Edwards RD, Schweizer C, Jantunen M, Lai HK, Bayer-Oglesby L, Katsouyanni K, Nieuwenhuijsen M, Saarela K, Sram R, Künzli N (2005) Personal exposures to VOC in the upper end of the distribution-relationships to indoor, outdoor and workplace concentrations. Atmos Environ 39:2299–2307.

    Article  Google Scholar 

  • Emmerich SJ, Gorfain JE, Howard-Reed C (2003) Air and pollutant transport from attached garages to residential living spaces. Int J Ventilation 2:265–276.

    Google Scholar 

  • Fisk WJ, Faulkner D, Palonen J, Seppanen O (2002) Performance and costs of particle air filtration technologies. Indoor Air 12:223–234.

    Article  Google Scholar 

  • Freijer JI, Bloemen HJ (2000) Modeling relationships between indoor and outdoor air quality. J Air Waste Manage Assoc 50:292–300.

    Google Scholar 

  • Gallego E, Roca FJ, Perales JF, Guardino X (2008a) Simultaneous evaluation of odor episodes and air quality: Methodology to identify air pollutants and their origin combining chemical analysis (TD-GC/MS), social participation, and mathematical simulations techniques. In: Romano GC, Conti AG (Eds.) Air Quality in the XXI Century. Nova Science Publishers Inc., New York, NY.

    Google Scholar 

  • Gallego E, Soriano C, Roca FJ, Perales JF, Alarcón M, Guardino X (2008b) Identification of the origin of odour episodes through social participation, chemical control and numerical modelling. Atmos Environ 42:8150–8160.

    Article  Google Scholar 

  • Gallego E, Roca FJ, Guardino X, Rosell MG (2008c) Indoor and outdoor BTX levels in Barcelona city metropolitan area and catalan rural areas. J Environ Sci 20:1063–1069.

    Article  Google Scholar 

  • Gallego E, Roca FJ, Perales JF, Guardino X (2009a) Determining indoor air quality and identifying the origin of odour episodes in indoor environments. J Environ Sci 21:333–339.

    Article  Google Scholar 

  • Gallego E, Roca FJ, Perales JF, Guardino X (2009b) Use of sorbents in air quality control systems. In: Willis TP (Ed.) Sorbents: Properties, Materials and Applications. Nova Science Publishers Inc., New York, NY.

    Google Scholar 

  • Gallego E, Roca FJ, Perales JF, Guardino X (2010) Comparative study of the adsorption performance of a multi-sorbent bed (carbotrap, carbopack X, carboxen 569) and a tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta 81:916–924.

    Article  Google Scholar 

  • Gallego E, Roca FX, Perales F, Ribes A, Carrera G, Guardino X, Berenguer MJ (2007) Isocyanatocyclohexane and isothiocyanatocyclohexane levels in urban and industrial areas and possible emission-related activities. Atmos Environ 41:8228–8240.

    Article  Google Scholar 

  • Godish T (1997) Air Quality. Lewis Publishers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Godish T (2001) Indoor Environmental Quality. Lewis Publishers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Griman JR, Hadwen GE, Burton LE, Wombe SE, McCarthy JF (1999) Individual volatile organic compound prevalence and concentrations in 56 buildings of the building assessment survey and evaluation (BASE) study. In: Proceedings of the 8th international conference on indoor air quality and climate, vol. 2, pp. 460–465, Edinburgh, Scotland.

    Google Scholar 

  • Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66.

    Article  Google Scholar 

  • Guo H, Murray F, Lee SC (2003) The development of low volatile organic compound emission house-a case study. Build Environ 38:1413–1422.

    Article  Google Scholar 

  • Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chrom A 885:129–151.

    Article  Google Scholar 

  • Hey K, Juran S, Schäper M (2009) Neurobehavioral effects during exposures to propionic acid-an indicator of chemosensory distraction? Neurotoxicology 30:1223–1232.

    Article  Google Scholar 

  • Hippelein M (2004) Background concentrations of individual and total volatile organic compounds in residential indoor air of Schleswig-Holstein, Germany. J Environ Monit 6:745–752.

    Article  Google Scholar 

  • Hodgson AT, Rudd AF, Beal D, Chandra S (2000) Volatile organic compound concentrations and emission rates in new manufactured and site-built houses. Indoor Air 10:178–192.

    Article  Google Scholar 

  • Holcomb LC, Seabrook BS (1995) Indoor concentrations of volatile organic compounds: Implications for comfort, health and regulation. Indoor Environ 4:7–26.

    Article  Google Scholar 

  • Huang H, Haghighat F (2003) Building materials VOC emissions-a systematic parametric study. Build Environ 38:995–1005.

    Article  Google Scholar 

  • Hummel T, Dalton P, Dilks DD (1999) Effects of exposure to irritants. Soc Neurosci Abstr 25:2187.

    Google Scholar 

  • Hummelgaard J, Juhl P, Sæbjörnsson KO, Clausen G, Toftum J, Langkide G (2007) Indoor air quality and occupant satisfaction in five mechanically and four naturally ventilated open-plan office buildings. Build Environ 42:4051–4058.

    Article  Google Scholar 

  • Hutter H-P, Moshammer H, Wallner P, Damberger B, Tappler P, Kundi M (2006) Health complaints and annoyances after moving into a new office building: A multidisciplinary approach including analysis of questionnaires, air and house dust samples. Int J Hyg Environ Health 209:65–68.

    Article  Google Scholar 

  • Hyttinen M, Oasanen P, Björkroth M, Kalliokoski P (2007) Odors and volatile organic compounds released from ventilation filters. Atmos Environ 41:4029–4039.

    Article  Google Scholar 

  • Ilgen E, Karfich N, Levsen K, Angerer J, Schneider P, Heinrich J, Wichmann H-E, Dunemann L, Begerow J (2001a) Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos Environ 35:1235–1252.

    Article  Google Scholar 

  • Ilgen E, Levesen K, Angerer J, Schneider P, Heinrich J, Wichmann H-E (2001b) Aromatic hydrocarbons in the atmospheric environment: Part II. Univariate and multivariate analysis and case studies of indoor concentrations. Atmos Environ 35:1253–1264.

    Article  Google Scholar 

  • ISO 16000-6. Indoor air. Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID.

    Google Scholar 

  • Järnström H, Saarela K, Kalliokoski P, Pasanen A-L (2006) Reference values for indoor air pollutant concentrations in new, residential buildings in Finland. Atmos Environ 40:7178–7191.

    Article  Google Scholar 

  • Jensen LK, Larsen A, Mølhave L, Hansen MK, Knudsen B (2001) Health evaluation of volatile organic compound (VOC) emissions from wood and wood-based materials. Arch Environ Health 56:419–432.

    Article  Google Scholar 

  • Jia C, Batterman S, Godwin C (2008a) VOCs in industrial, urban and suburban neighborhoods-part 2: Factors affecting indoor and outdoor concentrations. Atmos Environ 42:2101–2116.

    Article  Google Scholar 

  • Jia C, Batterman S, Godwin C (2008b) VOCs in industrial, urban and suburban neighborhoods, part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ 42:2083–2100.

    Article  Google Scholar 

  • Jo W-J, Sohn J-S (2009) The effect of environmental and structural factors on indoor air quality of apartments in Korea. Build Environ 44:1794–1802.

    Article  Google Scholar 

  • Johansson I (1999) The Role of Volatile Organic Compounds in the Assessment of Indoor Air Quality. Thesis, Department of Chemistry, Division of Analytical Chemistry. Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564.

    Article  Google Scholar 

  • Katsoyiannis A, Leva P, Kotzias D (2008) VOC and carbonyl emissions from carpets: A comparative study using four types of environmental chambers. J Hazard Mater 152:669–676.

    Article  Google Scholar 

  • Khoder MI (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41:554–566.

    Article  Google Scholar 

  • Kim S-S, Kang D-H, Choi D-H, Yeo M-S, Kim K-W (2008) Comparison of strategies to improve indoor air quality at the pre-occupancy stage in new apartment buildings. Build Environ 43:320–328.

    Article  Google Scholar 

  • Kim K-H, Oh S-I, Choi Y-J (2004) Comparative analysis of bias in the collection of airborne pollutants: Tests on major aromatic VOC using three types of sorbent-based methods. Talanta 64:518–527.

    Article  Google Scholar 

  • Knöppel H, Schauenburg H (1989) Screening of household products for the emission of volatile organic compounds. Environ Int 15:413–418.

    Article  Google Scholar 

  • Koistinen K, Kotzias D, Kephalopoulos S, Schlitt C, Carrer P, Jaunten M, Kirchner S, McLaughlin J, Mølhave L, Fernandes EO, Seifert B (2008) The INDEX project: Executive summary of a european union project on indoor air pollutants. Allergy 63:810–819.

    Article  Google Scholar 

  • Kongtip P, Thongsuk W, Yoosook W, Chantanakul S (2006) Health effects of metropolitan traffic-related air pollutants on street vendors. Atmos Environ 40:7138–7145.

    Article  Google Scholar 

  • Krause C, Mailahn W, Nagel R, Schulz C, Seifert B, Ullrich D (1987) Occurrence of volatile organic compounds in the air of 500 homes in the Federal Republic of Germany. In: Proceedings of indoor air’87, institute of water, soil and air hygiene, Berlin-Dahlem, Germany.

    Google Scholar 

  • Kuntasal ÖO, Karman D, Wang D, Tuncel SG, Tuncel G (2005) Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-path thermal desorption followed by gas chromatographic-mass spectrometric analysis. J Chromatogr A 1099:43–54.

    Article  Google Scholar 

  • Lebret E, van del Wiel HJ, Bos H, Noij D, Boleij JSM (1986) Volatile organic compounds in Dutch homes. Environ Int 12:323–332.

    Article  Google Scholar 

  • Lee SC, Li W-M, Ao C-H (2002) Investigation of indoor air quality at residential homes in Hong Kong-case study. Atmos Envrion 36:225–237.

    Article  Google Scholar 

  • Lehmann I, Röder-Stolinski C, Nieber K, Fischäder G (2008) In vitro models for the assessment of inflammatory and immuno-modulatory effects of the volatile organic compound chlorobenzene. Exp Toxicol Pathol 60:185–193.

    Article  Google Scholar 

  • Levy F (1997) Clinical features of multiple chemical sensitivity. Scand J Work Envrion Health 23:69–73.

    Google Scholar 

  • Liang H-M, Liao C-M (2007) Modeling VOC-odor exposure risk in livestock buildings. Chemosphere 68:781–789.

    Article  Google Scholar 

  • Lin Z, Chow TT, Fong KF, Tsang CF, Wang Q (2005) Comparison of performances of displacement and mixing ventilations. Part II: Indoor air quality. Int J Refrig 28:288–305.

    Article  Google Scholar 

  • Lundgren B, Jonsson B, El-Olausson B (1999) Materials emission of chemicals-PVC flooring materials. Indoor Air 9:202–208.

    Article  Google Scholar 

  • Maroni M, Seifert B, Lindvall T (1995) Indoor Air Quality. A comprehensive reference book. Air Quality monographs-vol. 3. Elsevier, Amsterdam.

    Google Scholar 

  • McKenzie JR, Mann J (2004) Use of odour annoyance index surveys for the confirmation of computer based dispersion modelling. Proceedings of Air Quality Modelling Conference: Air Quality Modelling. Air & Waste Management Association, pp.285–299.

    Google Scholar 

  • Minnesota Pollution Control Agency (2010) Health Risk Values, Minnesota Rules, sections 4717.8000 to 4717.8600, St. Paul, MN; http://www.revisor.leg.state.mn.us/arule/4717. Accessed May 2010.

  • Mohamed M, Kang D, Aneja VP (2002) Volatile organic compounds in some urban locations in united states. Chemosphere 47:863–882.

    Article  Google Scholar 

  • Mølhave L (1991a) Volatile organic compounds, indoor air quality and health. Indoor Air 1:357–376.

    Article  Google Scholar 

  • Mølhave L, Jensen JG, Larsen S (1991b) Subjective reactions to volatile organic compounds as air pollutants. Atmos Environ 25A:1283–1293.

    Google Scholar 

  • Mølhave L (1992) Interpretation and limitations of the concept “total volatile organic compounds” (TVOC) as an indicator of human responses to exposures of volatile organic compounds (VOC) in indoor air. Indoor Air 2:65–77.

    Article  Google Scholar 

  • Mølhave L (1999) The TVOC concept. In: Salthammer T (Ed.) Organic Indoor Air Pollutants. WILEY-VCH, Weinheim.

    Google Scholar 

  • Mølhave L (2000) Volatile organic compounds and the sick building syndrome. In: Spengler J et al (Eds.) Human Toxicants: Human Exposures and Their Health Effects. WILEY-VCH, Weinheim.

    Google Scholar 

  • Mølhave L (2001) Sensory irritation in humans caused by volatile organic compounds (VOCs) as indoor air pollutants: A summary of 12 exposure experiments. In: Spengler J et al (Eds.) Indoor air Quality Handbook. McGraw-Hill, New York, NY.

    Google Scholar 

  • Mølhave L (2003) Organic compounds as indicators of air pollution. Indoor Air 13:12–19.

    Article  Google Scholar 

  • Mølhave L, Clausen G, Berglund B, De Ceaurriz J, Kettrup A, Lindvall T, Maroni M, Pickering AC, Risse U, Rothweiler H, Seifert B, Younes M (1997) Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 7:225–240.

    Article  Google Scholar 

  • Monks PS, Granier C, Fuzzi S, Stohl A, Williams ML, Akimoto H, Amann M, Baklanov A, Baltensperger U, Bey I, Blake N, Blake RS, Carslaw K, Cooper OR, Dentener F, Fowler D, Fragkou E, Frost GJ, Generoso S, Ginoux P et al (2009) Atmospheric composition change-global and regional air quality. Atmos Environ 43:5268–5350.

    Article  Google Scholar 

  • Nicolas J, Denne P, Romain AC, Delva J (2007) Estimation de nuisances olfactives. Campagne de mesures des odeurs sur le CET de Malvoisin. Département des Sciences et de Gestion de l’Environment-Université de Liège, Arlon.

    Google Scholar 

  • Olesen BW (2004) Internacional standards for the indoor environment. Indoor Air 14:18–26.

    Article  Google Scholar 

  • Olson DA, Corsi RL (2002) Fate and transport of contaminants in indoor air. Soil Sediment Contam 11:583–601.

    Article  Google Scholar 

  • Pappas GP, Herbert RJ, Henderson W, Koenig J, Stover B, Barnhart S (2000) The respiratory effects of volatile organic compounds. Int J Occup Environ Health 6:1–8.

    Google Scholar 

  • Pariselli F, Sacco MG, Rembges D (2009) An optimized method for in vitro exposure of human derived lung cells to volatile chemicals. Exp Toxicol Pathol 61:33–39.

    Article  Google Scholar 

  • Peng C-Y, Lan C-H, Wu T-J (2009) Investigation of indoor chemical pollutants and perceived odor in an area with complaints of unpleasant odors. Build Environ 44:2106–2113.

    Article  Google Scholar 

  • Peng C-Y, Lin T-S (2007) Volatile organic compound exposure of suburban elementary students in Taiwan. Bull Environ Contam Toxicol 78:25–28.

    Article  Google Scholar 

  • Prado C, Alcaraz MJ, Fuentes A, Garrido J, Periago JF (2006) Storage stability of ketones on carbon adsorbents. J Chromatogr A 1129:82–87.

    Article  Google Scholar 

  • Prüs-Üstüm A, Corvalán C (2006) Preventing disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease. World Health Organization, Geneva.

    Google Scholar 

  • Ras MR (2008) Determinació de Compostos Orgànics Volàtils i Semivolàtils en Atmosferes Urbanes i Industrials del Camp de Tarragona. Thesis, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain.

    Google Scholar 

  • Ras MR, Borrull F, Marcé RM (2009) Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. TrAC Trends Anal Chem 28:347–361.

    Article  Google Scholar 

  • Rehfuess E, Mehta S, Prüss-Üstün A (2006) Assessing household solid fuel use: Multiple implications for the millennium development goals. Environ Health Persp 114:373–378.

    Article  Google Scholar 

  • Reiser R, Meile A, Hofer C, Knutt R (2002) Indoor air pollution by volatile organic compounds (VOC) emitted from flooring material in a Technical University in Switzerland. In: Proceedings: Indoor Air 2002, pp. 1004–1009.

    Google Scholar 

  • Repetto M (1997) Toxicología Fundamental. Ediciones Díaz Santos, S.A. Madrid, Spain.

    Google Scholar 

  • Ribes A, Carrera GE, Roca X, Berenguer MJ, Guardino X (2007) Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. J Chromatogr A 1140:44–55.

    Article  Google Scholar 

  • Righi E, Aggazzotti G, Fantuzzi G, Ciccarese V, Predieri G (2002) Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci Tot Environ 286:41–50.

    Article  Google Scholar 

  • Rios JLM, Laerte J, Gioda A, dos Santos CY, Neto FRA, Silva JRL (2009) Symptoms prevalence among office workers of a sealed versus a non-sealed building: Associations to indoor air quality. Environ Int 35:1136–1141.

    Article  Google Scholar 

  • Roca FJ (2006) Disseny d’un sistema de control d’olors i de la qualitat de l’aire. Caracterització, quantificació i assignació de l’origen dels compostos orgànics volàtils. Thesis, Department of Mining Engineering and Natural Resources, Polytechnic University of Catalonia. Barcelona, Spain.

    Google Scholar 

  • Roca FJ, Gallego E, Perales JF, Guardino X (2006) Projecte de realització de control d’episodis d’olor i qualitat de l’aire a l’àrea urbana de Benicarló. Laboratori del Centre de Medi Ambient, Polytechnic University of Catalonia. Barcelona, Spain.

    Google Scholar 

  • Roca FJ, Ribes A, Perales JF, Carrera G (2005) Projecte de caracterització d’episodis d’olor i de la qualitat de l’aire a les zones d’impacte de l’àrea urbana de Banyoles. Laboratori del Centre de Medi Ambient, Polytechnic University of Catalonia, Barcelona.

    Google Scholar 

  • Saarela K, Tirkkonen T, Laine-Ylijoki J, Jurvelin J, Nieuwenhuijsen MJ, Jantunen M (2003) Exposure of population and microenvironmental distributions of volatile organic compound concentrations in the EXPOLIS study. Atmos Environ 37:5563–5575.

    Article  Google Scholar 

  • Salthammer T (1997) Emission of volatile organic compounds from furniture coatings. Indoor Air 7:189–197.

    Article  Google Scholar 

  • Schieweck A, Lohrengel B, Siwinski N, Genning C, Salthammer T (2005) Organic and inorganic pollutants in storage rooms of the lower saxony state museum Hanover, Germany. Atmos Environ 39:6098–3108.

    Google Scholar 

  • Schlink U, Rehwagen M, Damm M, Ritchter M, Borte M, Herbath O (2004) Seasonal cycle of indoor-VOCs: Comparison of apartments and cities. Atmos Environ 38:1181–1190.

    Article  Google Scholar 

  • Schneider P, Gebefugi I, Richter K, Wölke G, Schnelle J, Wichmann H-E, Heinrich J, Study Group INGA (2001) Indoor and outdoor BTX levels in German cities. Sci Total Environ 267:41–51.

    Article  Google Scholar 

  • Seifert B (1990) Regulating indoor air. In: Proceedings of the 5th international conference on indoor air quality and climate, Toronto, ON.

    Google Scholar 

  • Seifert B, Abraham HJ (1982) Indoor air concentrations of benzene and some other aromatic hydrocarbons. Ecotox Environ Safety 6:190–192.

    Article  Google Scholar 

  • Seltzer JM (1995) Sources, concentrations, and assessment of indoor pollution. In: Seltzer JM (Ed.) Occupational Medicine: Effects of the Indoor Environment on Health. Hanley and Belfus, Philadelphia, PA.

    Google Scholar 

  • Seppänen O, Fisk WJ (2002) Association of ventilation system type with SBS symptoms in office workers. Indoor Air 12:98–112.

    Article  Google Scholar 

  • Sexton K, Adgate JL, Ramachandran G, Pratt GC, Mongin SJ, Stock TH, Mornandi MT (2004) Comparison of personal, indoor and outdoor exposures to hazardous air pollutants in three urban communities. Environ Sci Technol 38:423–430.

    Article  Google Scholar 

  • Shorter E (1997) Multiple chemical sensitivity: Pseudodisease in historical perspective. Scand J Work Environ Health 23:35–42.

    Google Scholar 

  • Sunesson A-L (2007) Passive sampling in combination with thermal desorption and gas chromatography as a tool for assessment of chemical exposure. In: Greenwood KM et al (Eds.) Comprehensive Analytical Chemistry (48): Passive Sampling Techniques in Environmental Monitoring. Elsevier, Amsterdam.

    Google Scholar 

  • Tham KW, Zuraimi MS, Sekhar SC (2004) Emission modelling and validation of VOCs’ source strengths in air-conditioned office premises. Environ Int 30:1075–1088.

    Article  Google Scholar 

  • Tuomainen M, Tuomainen A, Liesivuori J, Pasanen A-L (2003) The 3-year follow-up study in a block of flats-experiences in the use of the finnish indoor climate classification. Indoor Air 13:136–147.

    Article  Google Scholar 

  • Ulman M, Chilmonczyk Z (2007) Volatile organic compounds: Components, sources, determination. A review Chem Anal 52:173–200.

    Google Scholar 

  • US EPA (1999) Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Method TO-15 (EPA/625/R-96/010b). Center for Environmental Research Information, Office of Research and Development, Cincinnati, OH.

    Google Scholar 

  • US EPA (2010) Integrated Risk Information System (IRIS); http://www.epa.gov/iris/. Accessed May 2010.

  • Vautard R, Szopa S, Beekmann M, Menut L, Hauglustaine DA, Rouil L (2007) Modelling regional air quality over decades: Past and future trends in photochemical smog. Dev Environ Sci 6:210–219.

    Article  Google Scholar 

  • Venn AJ, Cooper M, Antoniak M (2003) Effects of volatile organic compounds, damp, and other environmental exposures in the home on wheezing illness in children. Thorax 58:955–960.

    Article  Google Scholar 

  • TIP-VENT (2001) Towards improved performances of mechanical ventilation systems. Non Nuclear Energy Programme JOULE IV. European Commission.

    Google Scholar 

  • Volden J, Tomasen Y, Greibrokk T, Thorud S, Molander P (2005) Stability of workroom air volatile organic compounds on solid adsorbents for thermal desorption gas chromatography. Anal Chim Acta 530:263–271.

    Article  Google Scholar 

  • Wang B-L, Takigawa T, Yamasaki Y, Sakano N, Wang D-H, Ogino K (2008) Symptom definitions for SBS (sick building syndrome) in residential dwellings. Int J Hyg Environ Health 211:114–120.

    Article  Google Scholar 

  • Weisel CP, Zhang J, Turpin BJ, Morandi MT, Colome S, Stock TH, Spektor DM, Korn L, Winer A, Alimokhtari S, Lwon J, Mohan K, Harrington R, Giovanetti R, Cui W, Afshar M, Maberti S, Shendell D (2005) Relationship of indoor, outdoor and personal air (RIOPA) study: Study design, methods and quality assurance/control results. J Expo Anal Env Epid 15:123–137.

    Article  Google Scholar 

  • Weschler CJ, Shields HC (2000) The influence of ventilation on reactions among indoor pollutants: Modelling and experimental observations. Indoor Air 10:92–100.

    Article  Google Scholar 

  • Weschler CJ, Shields HC, Rainer D (1990) Concentrations of volatile organic compounds at a building with health and comfort complaints. Am Ind Hyg Assoc J 51:261–268.

    Google Scholar 

  • WHO (World Health Organisation) (1982) Indoor Air Pollutants, Exposure and Health Effect Assessments (Euro Reports and Studies No. 78). WHO regional office for Europe, Copenhagen.

    Google Scholar 

  • WHO (World Health Organisation) (1986) Indoor Air Quality Research: Report on a WHO Meeting (Euro Reports and Studies No. 103). WHO, Regional Office for Europe, Copenhagen.

    Google Scholar 

  • WHO (World Health Organisation) (1989) Indoor Air Quality: Organic Pollutants (Euro Reports and Studies No. 111). WHO Regional Office for Europe, Copenhagen.

    Google Scholar 

  • WHO (World Health Organisation) (2002) Reducing Risks, Promoting Healthy Life. The World Health Report 2002, Geneva.

    Google Scholar 

  • WHO (World Health Organization) (2005) WHO Air Quality Guidelines: Global Update. WHO Regional Office for Europe, Copenhagen.

    Google Scholar 

  • WHO (World Health Organisation) (2006) Fuel for Life: Household Energy and Health. WHO, Geneva.

    Google Scholar 

  • Wichmann G, Mühlenberg J, Fischäder G, Kulla C, Rehwagen M, Herbarth O, Lehmann I (2005) An experimental model for the determination of immunomodulating effects by volatile compounds. Toxicol Vitro 19:685–693.

    Article  Google Scholar 

  • Winder C (2002) Mechanisms of multiple chemical sensitivity. Toxicol Lett 128:85–97.

    Article  Google Scholar 

  • Wolkoff P (1995) Volatile organic compounds-sources, measurements, emissions, and the impact on indoor air quality. Indoor Air Suppl 3:9–73.

    Google Scholar 

  • Wolkoff P (2003) Trends in europe to reduce the indoor air pollution of VOCs. Indoor Air 13:5–11.

    Article  Google Scholar 

  • Wolkoff P, Clausen PA, Jensen B, Nielsen GD, Wilkins CK (1997) Are we measuring the relevant indoor pollutants? Indoor Air 7:92–106.

    Article  Google Scholar 

  • Wolkoff P, Nielsen GD (2001) Organic compounds in indoor air-their relevance for perceived indoor air quality? Atmos Environ 35:4407–4417.

    Article  Google Scholar 

  • Wolkoff P, Wilkins CK, Clausen PA, Nielsen GD (2006) Organic compounds in office environments-sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 16:7–19.

    Article  Google Scholar 

  • Wong LT, Mui KW, Hui PS (2006) A statistical model for characterizing common air pollutants in air-conditioned offices. Atmos Environ 40:4246–4257.

    Article  Google Scholar 

  • Wong LT, Mui KW, Hui PS (2008) A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Build Environ 43:1–6.

    Article  Google Scholar 

  • Woolfenden E (2010a) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 1: Sorbent-based air monitoring options. J Chromatogr A 1217:2674–2684.

    Article  Google Scholar 

  • Woolfenden E (2010b) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2: Sorbent selection and other aspects of optimizing air monitoring methods. J Chromatogr A 1217:2685–2694.

    Article  Google Scholar 

  • Wu C-H, Feng C-T, Lo Y-S, Lin T-Y, Lo J-G (2004) Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Chemosphere 56:71–80.

    Article  Google Scholar 

  • Xu Y, Raja S, Ferro AR (2010) Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children’s health. Build Environ 45:330–337.

    Article  Google Scholar 

  • Yang W, Sohm J, Kim J, Son B, Park J (2009) Indoor air quality investigation According To age of the school buildings in Korea. J Environ Manage 90:348–354.

    Article  Google Scholar 

  • Yu BF, Hu ZB, Liu M, Yang HL, Kong QX, Liu YH (2009) Review of research on air-conditioning systems and indoor air quality control for human health. Int J Refrig 32:3–20.

    Article  Google Scholar 

  • Zeliger HI (2003) Toxic effects of chemical mixtures. Arch Environ Health 58:23–29.

    Article  Google Scholar 

  • Zeliger HI (2008) Chemical sensitivity: Multiple chemical sensitivity (MCS), chronic fatigue syndrome (CFS), fibromyalgia (FM), and gulf war syndrome (GWS). In: Zeliger H (Ed.) Human Toxicology of Chemical Mixtures. William Andrew Publishing, Norwich, New York, NY.

    Google Scholar 

  • Zhang J, Smith KR (2003) Indoor air pollution: A global health concern. Brit Med Bull 68:209–225.

    Article  Google Scholar 

  • Zhang Y, Xu Y (2002) Characteristics and correlations of VOC emissions from building materials. Heat Mass Transfer 46:4877–4883.

    Google Scholar 

  • Zuraimi MS, Roulet C-A, Tham KW, Sekhar SC, Cheong KWD, Wong NH, Lee KH (2006) A comparative study of VOCs in Singapore and European office buildings. Build Environ 41:316–329.

    Article  Google Scholar 

  • Zuraimi MS, Tham KW, Sekhar SC (2003) The effects of ventilation operations in determining contributions of VOCs sources in air-conditioned tropical buildings. Build Environ 38:23–32.

    Article  Google Scholar 

  • Zuraimi MS, Tham KW, Sekhar SC (2004) A study on the identification and quantification of sources of VOCs in 5 air-conditioned Singapore office buildings. Build Environ 39:165–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Gallego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Gallego, E., Roca, F.J., Perales, J.F., Guardino, X. (2011). Assessment of Chemical Hazards in Sick Building Syndrome Situations: Determination of Concentrations and Origin of VOCs in Indoor Air Environments by Dynamic Sampling and TD-GC/MS Analysis. In: Abdul-Wahab, S. (eds) Sick Building Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17919-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17919-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17918-1

  • Online ISBN: 978-3-642-17919-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics