Skip to main content

Nitrogen Modulation on Plant Direct and Indirect Defenses

  • Chapter
Recent Advances in Entomological Research

Abstract

Instead of being passively attacked by insect herbivores, plants possess a myriad of defense mechanisms to protect themselves. These mechanisms function broadly either by directly reducing herbivore fitness (direct plant defense), or by indirectly attracting natural enemies of the herbivores (indirect plant defense). Many biotic and abiotic factors including nitrogen affect the expression of plant defenses. Nitrogen fertilization is by and large the most common agronomic practice in crop production. Anthropogenic use of nitrogen contributes to meeting the food supply for the rapidly increasing in human population. On the other hand, it alters plant defense capability and the global nitrogen cycle, which is increasingly threatening plant and animal biodiversity in managed and natural ecosystems. In this chapter, we first briefly review types of plant defense and ecological and environmental consequences associated with anthropogenic addition of nitrogen into ecosystems. We then review the influences of nitrogen fertilization on plant direct and indirect defenses. Finally, we discuss the possibility of developing new sustainable pest management tactics through nitrogen management minimizing the negative and maximizing the positive components of tritrophic interactions through optimized nitrogen applications in agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baggen L R, Gurr G M. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the used of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biol. Control, 1998, 11: 9–17.

    Article  Google Scholar 

  • Bennett R N, Wallsgrove R M. Secondary metabolites in plant defense mechamisms. New Phytol., 1994, 127: 617–633

    Article  CAS  Google Scholar 

  • Bentz J A, Reeves J III, Barbosa P, et al. The effect of nitrogen fertilizer applied to Euphorbia pulcherrima on the parasitization of Bemisia argentifolii by the parasitoid Encarsia Formosa. Entomol. Exp. Appl., 1996, 78: 105–110.

    Article  Google Scholar 

  • Berenbaum M R. The chemistry of defense: theory and practice. Proc. Natl. Acad. Sci. USA, 1995, 92: 2–8.

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Howe G A. New weapons and a rapid response against insect attack. Plant Physiol., 2008, 146: 832–838.

    Article  PubMed  CAS  Google Scholar 

  • Bryant J P, Chapin F S III, Klein D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 1983, 40: 357–368.

    Article  CAS  Google Scholar 

  • Camargo J A, Alonso á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int., 2006, 32: 831–849.

    Article  PubMed  CAS  Google Scholar 

  • Campbell B C, Duffey S S. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science, 1979, 205: 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y. Tritrophic effects of nitrogen on cotton ecosystem. Ph.D. dissertation, Georgia: the University of Georgia, USA, 2007.

    Google Scholar 

  • Chen Y, Ni X, Cottrell T E, et al. Changes of oxidase and hydrolase activities in pecan leaves elicited by black pecan aphid (Hemiptera: Aphididae) feeding. J. Econ. Entomol., 2009, 102: 1262–1269.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Ruberson J R. Impact of variable nitrogen fertilization on arthropods in cotton in Georgia, USA. Agr. Ecosyst. Environ., 2008, 126: 281–288.

    Article  CAS  Google Scholar 

  • Chen Y, Ruberson J R, Lewis W J, et al. Herbivore feeding and induction of systemic resistance in cotton plants: proceedings of Beltwide Cotton Conferences, National Cotton Council, Memphis: TN. 2006: 1510–1520.

    Google Scholar 

  • Chen Y, Ruberson J R, Olson D M. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol. Exp. Appl., 2008a, 126: 245–255.

    Article  CAS  Google Scholar 

  • Chen Y, Schmelz E A, Ruberson J R. Cotton plant, Gossypium hirsutum L., defense in response to nitrogen fertilization. J. Chem. Ecol., 2008b, 34: 1553–1564.

    Article  PubMed  CAS  Google Scholar 

  • Choh Y, Shimoda T, Ozawa R, et al. Exposure of lima bean leaves to volatiles from herbivoreinduced conspecific plants results in emission of carnivore attractants: active or passive process? J. Chem. Ecol., 2004, 30: 305–1317.

    Article  Google Scholar 

  • Cipollini D F, Bergelson J. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J. Chem. Ecol., 2001, 27: 593–610.

    Article  PubMed  CAS  Google Scholar 

  • Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451: 712–715.

    Article  PubMed  CAS  Google Scholar 

  • Coley P D, Bryant J P, Chapin F S III. Resource availability and plant antiherbivore defense. Science, 1985, 230: 895–899.

    Article  PubMed  CAS  Google Scholar 

  • Coll M, Guershon M. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu. Rev. Entomol., 2002, 47: 267–297.

    Article  PubMed  CAS  Google Scholar 

  • Corbett A, Rosenheim J A. Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol. Entomol., 1996, 21: 155–164.

    Article  Google Scholar 

  • Cortesero A M, Stapel J O, Lewis J W. Understanding and manipulating plant attributes to enhance biological control. Biol. Control, 2000, 17: 35–49.

    Article  Google Scholar 

  • Coviella C E, Stipanovic R D, Trumble J T. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot., 2002, 53: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Darrow K, Bowers M D. Effects of herbivore damage and nutrient levels on induction of iridoid glycosides in Plantago lanceolata. J. Chem. Ecol., 1999, 25: 1427–1440.

    Article  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, et al. Herbivore-infested plants selectively attract parasitoids. Nature, 1998, 393: 570–573.

    Article  Google Scholar 

  • Denno R F, Fagan W F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology, 2003, 84: 2522–2531.

    Article  Google Scholar 

  • Dicke M, Sabelis M W. How plants obtain predatory mites as bodyguards. Neth. J. Zool., 1988, 38: 148–165.

    Article  Google Scholar 

  • Dicke M, Sabelis M W, Takabayashi J, et al. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J. Chem. Ecol., 1990, 16: 3091–3118.

    Article  CAS  Google Scholar 

  • Dudt J F, Shure D J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology, 1994, 75: 86–98.

    Article  Google Scholar 

  • Eijs I, Ellers J, van Duinen G. Feeding strategies in drosophilid parasitoids: the impact of natural food resources on energy reserves in females. Ecol. Entomol., 1998, 23: 133–138.

    Article  Google Scholar 

  • Elkassabany N, Ruberson J R, Kring T J. Seasonal distribution and overwintering of Orius insidiosus. J. Entomol. Sci., 1996, 31: 76–88.

    Google Scholar 

  • Elser J J, Fagan WF, Denno R F, et al. Nutritional constraints in freshwater and terrestrial food webs. Nature, 2000, 408: 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Fagan W F, Siemann E, Mitter C, et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat., 2002, 160: 784–802.

    Article  PubMed  Google Scholar 

  • Feeny P. Plant apparency and chemical defense, // J. W. Wallace and R. L. Mansell (eds.), Recent advances in phytochemistry. New York: Plenum Press, 1976, 10: 1–40.

    Google Scholar 

  • Giles J. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433: 791.

    Article  PubMed  CAS  Google Scholar 

  • Gleadow R M, Woodrow I E. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol., 2002, 28: 1301–1313.

    Article  PubMed  CAS  Google Scholar 

  • Glynn C, Herms D A, Egawa M, et al. Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar. Oikos, 2003, 101: 385–397.

    Article  CAS  Google Scholar 

  • Godfray H C J. Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press, USA, 1994.

    Google Scholar 

  • Gouinguené S, Turlings T C J. The effects of abiotic factors on induced volatile emission in corn plants. Plant Physiol., 2002, 129: 1296–1307.

    Article  PubMed  CAS  Google Scholar 

  • Hagley E A C, Barber D R. Effects of food sources on the longevity and fecundity of Pholetesor ornigis (Weed) (Hymenoptera: Braconidae). Can. Entomol., 1992, 124: 341–346.

    Article  Google Scholar 

  • Hairston N G, Smith F E, Slobodkin L B. Community structure, population control, and eompetition. Am. Nat., 1960, 94: 421–425.

    Article  Google Scholar 

  • Hamrick D. MPS: documenting effects on the environment. GrowerTalks, 2002, 64: 112–114.

    Google Scholar 

  • Hance T, Boivin G. Effect of parasitism by Anaphes sp. (Hymenoptera: Mymaridae) on the cold hardiness of Listronotus oregonensis (Coleoptera: Curculionidae) eggs. Can J. Zool., 1993, 71: 759–764.

    Article  Google Scholar 

  • Hemming J D C, Lindroth R L. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J. Chem. Ecol., 1999, 25: 1687–1714.

    Article  CAS  Google Scholar 

  • Herms D A. Effects of fertilization on insects resistance of woody ornamental plants: reassessing an entrenched paradigm. Environ. Entomol., 2002, 31: 923–933.

    Article  Google Scholar 

  • Herms D A, Mattson W J. The dilemma of plants: to grow or defend. Q. Rev. Bio., 1992, 67: 283–335.

    Article  Google Scholar 

  • Hespenheide H A. Insects visitors to extrafloral nectarines of Byttneria aculeate (Sterculiaceae): relative importance and roles. Ecol. Entomol., 1985, 10: 191–204.

    Article  Google Scholar 

  • Hol W H G, Vrieling K, van Veen J A. Nutrients decrease pyrrolididine alkaloid concentractions in Senecio jacobaea. New Phytol., 2003, 158: 175–181.

    Article  CAS  Google Scholar 

  • Idris A, Grafius E. Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Plutellidae). Environ. Entomol., 1995, 24: 1726–1735.

    Google Scholar 

  • Irvin N A, Hoddle M S. Evaluation of floral resources for enhancement of fitness of Gonatocerus ashmeadi, an egg parasitoid of the glassy-winged sharpshooter, Homalodisca vitripennis. Biol. Control, 2007, 40: 80–88.

    Article  Google Scholar 

  • Jervis M A, Kidd N A C. Parasitoid adult nutritional ecology: implications for biological control. // Hawkins, B. and Cornell, H. eds. Theoretical Approaches to Biological Control. Cambridge: Cambridge University Press, 1999: 131–151.

    Chapter  Google Scholar 

  • Joham H E. Effects of nutrient elements on fruiting efficiency. // Mauney, J.R., J.M. Stewart (eds), Cotton Physiology. Memphis: The Cotton Foundation, TN, 1986: 79–90.

    Google Scholar 

  • Karban R, Baldwin I T. Induced responses to herbivory. The University of Chicago Press, Chicago and London, 1997.

    Google Scholar 

  • Keeler K H. The extrafloral nectarines of Ipomoea carnea (Convolvulaceae). Am. J. Bot., 1977, 64: 1182–1188.

    Article  Google Scholar 

  • Keeler K H. Insects feeding at extrafloral nectarines of Ipomoea carnea (Convolvulaceae). Entomol. News, 1978, 89: 163–168.

    Google Scholar 

  • Kelly C A. Extrafloral nectarines: ants, herbivores and fecundity in Cassia fasciculate. Oecologia, 1986, 69: 600–605.

    Article  Google Scholar 

  • Kester K M, Barbosa P. Behavioral and ecological constraints imposed by plants on insect parasitoids: implications for biological control. Biol. Control, 1991, 1: 94–106.

    Article  Google Scholar 

  • Koptur S. Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology, 1985, 66: 1639–1650.

    Article  Google Scholar 

  • Koptur S. Extrafloral nectary-mediated interactions between insects and plants. // E. Bernays (Ed.) Insect-plant interactions. Boca Raton: CRC Press, FL, 1992, IV: 81–129.

    Google Scholar 

  • Koricheva J, Larsson S, Haukioja E, et al. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 1998, 83: 212–226.

    Article  CAS  Google Scholar 

  • Krischik VA, Denno R F. Individual, population, and geographic patterns in plant defense. // R.F. Denno and M.S. McClure (eds). Variable plants and herbivores in natural and managed systems. New York: Academic Press, 1983: 463–512.

    Google Scholar 

  • Lee J, Andow D A, Heimpel G E. Influence of floral resources on sugar feeding and nutrient dynamics of a parasitoid in the field. Ecol. Entomol., 2006, 31: 470–480.

    Article  Google Scholar 

  • Lee J, Hemipel G E, Leibee G L. Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol. Exp. Appl., 2004, 111: 189–199.

    Article  Google Scholar 

  • Lewis W J, van Lenteren J C, Phatak S C, et al. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. USA, 1997, 94: 12243–12248.

    Article  PubMed  CAS  Google Scholar 

  • Loader C, Damman H. Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology, 1991, 72: 1586–1590.

    Article  Google Scholar 

  • Loomis W E. Growth-differentiation balance vs carbohydratenitrogen ration. Proc. Am. Soc. Hort. Sci., 1932, 29: 240–245.

    CAS  Google Scholar 

  • Lou Y, Baldwin I T. Nitrogen supply influences herbivoreinduced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol., 2004, 135: 496–506.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin J H, Manukian A, Heath R R, et al. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA, 1994, 91: 11836–11840.

    Article  PubMed  CAS  Google Scholar 

  • Mattson W J Jr. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst., 1980, 11: 119–161.

    Article  Google Scholar 

  • McKey D. Adaptive patterns in alkaloid physiology. Am. Nat., 1974, 108: 305–320.

    Article  Google Scholar 

  • McKey D. The distribution of secondary compounds within plants. // G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: their interaction with secondary plant metabolites. New York: Academic Press, 1979: 55–133.

    Google Scholar 

  • Moller. Cyanogenic glucosides and plant-insect interactions. Phytochemistry, 2004, 65: 293–306.

    Article  CAS  Google Scholar 

  • Morales-Ramos J A, Rojas M C, King E G. Significance of adult nutrition and oviposition experience on longevity and attainment of full fecundity of Catolaccus grandis (Hymenoptera: Pteromalidae). Ann. Entomol. Soc. Am., 1996, 89: 555–563.

    Google Scholar 

  • Nishida R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol., 2002, 47: 57–92.

    Article  PubMed  CAS  Google Scholar 

  • Ohnmeiss T, Baldwin I T. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology, 2000, 81: 1765–1783.

    Article  Google Scholar 

  • Olson D L, Nechols J R. Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera: Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Environ. Entomol., 1995, 24: 454–458.

    Google Scholar 

  • Olson D M, Cortesero A M, Rains G C, et al. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol. Control, 2009, Doi: 10.1016/j.biocontrol.

    Google Scholar 

  • Orians C M, Lower S, Fritz R S, et al. The effects of plant variation and soil nutrients on secondary chemistry and growth in a shrubby willow, Salix sericea: patterns and constraints on the evolution of resistance traits. Biochem. Syst. Ecol., 2003, 31: 233–247.

    Article  CAS  Google Scholar 

  • Paré P W, Tumlinson J H. Induced synthesis of plant volatiles. Nature, 1997, 385: 30–31.

    Article  Google Scholar 

  • Paré P W, Tumlinson J H. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry, 1998, 47: 521–526.

    Article  Google Scholar 

  • Pemberton RW, Lee J H. The influence of extrafloral nectarines on parasitism of an insect herbivore. Am. J. Bot., 1996, 83: 1187–1194.

    Article  Google Scholar 

  • Pfender W F. Role of phenoogy in host susceptibility and withinplant spread of stem rust during reproductive development of perennial ryegrass. Phytopathol., 2004, 94: 308–316.

    Article  CAS  Google Scholar 

  • Pickett J. Insect-plant interactions and induced plant defence. New Work: Wiley, 1999.

    Google Scholar 

  • Polis G A, Strong D R. Food web complexity and community dynamics. Am. Nat., 1996, 147: 813–846.

    Article  Google Scholar 

  • Prudic K L, Oliver J C, Bowers M D. Soil nutrient effects on oviposition preference, larval performance and chemical defense of a specialist insect herbivore. Oecologia, 2005, 143: 578–587.

    Article  PubMed  Google Scholar 

  • Quicke D. Parasitic wasps. Chapman & Hall, London, 1997.

    Google Scholar 

  • Rahat S, Gurr G M, Wratten S D, et al. Effects of plant nectars on adult longevity of the stinkbug parasitoid Trissolcus basalis. Int. J. Pest Manag., 2005, 51: 321–324.

    Article  Google Scholar 

  • Root R B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr., 1973, 43: 95–124.

    Article  Google Scholar 

  • Röse U S R, Lewis WJ, Tumlinson J H. Specificity of systemically released released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol., 1998, 24: 303–319.

    Article  Google Scholar 

  • Röse U S R, Manukian A, Heath R R, et al. Volatile semichemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage. Plant Physiol., 1996, 111: 487–495.

    PubMed  Google Scholar 

  • Rouse J D, Bishop C A, Struger J. Nitrogen pollution: an assessment of its threat to amphibian survival. Environ. Health Persp., 1999, 107: 799–803.

    Article  CAS  Google Scholar 

  • Schmelz E A, Alborn H A, Engelberth J, et al. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in Maize. Plant Physiol., 2003, 133: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven LM, van Loon J J A, Dicke M. Insect-plant biology. Oxford: Oxford University Press, 2005.

    Google Scholar 

  • Seigler D, Price PW. Secondary compounds in plants: primary functions. Am. Nat., 1976, 110: 101–105.

    Article  CAS  Google Scholar 

  • Seitzinger S. Out of reach. Nature, 2008, 452: 162–163.

    Article  PubMed  CAS  Google Scholar 

  • Shear C B, Crane H L, Myers A T. Nutrient element balance: a fundamental concept in plant nutrition. Proc. Am. Soc. Hort. Sci., 1964, 47: 239–248.

    Google Scholar 

  • Shimoda T, Ozawa R, Arimura G, et al. Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves by jasmonic acid and/or methyl salicylate. Appl. Entomol. Zool., 2002, 37: 535–541.

    Article  CAS  Google Scholar 

  • Sivinski J, Aluja M, Holler T. Food sources for adult Diachasmimorpha longicaudata, a parasitoid of tephritid fruit flies: effects on longevity and fecundity. Entomol. Exp. Appl., 2006, 118: 193–202.

    Article  Google Scholar 

  • Solar A, Colarič M, Usenik V, et al. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci., 2006, 170: 453–461.

    Article  CAS  Google Scholar 

  • Stamp N. Out of quagmire of plant defense hypotheses. Q. Rev. Biol., 2003, 78: 23–54.

    Article  PubMed  Google Scholar 

  • Stapel J O, Cortesero A M, De Moraes C M, et al. Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environ. Entomol., 1997, 26: 617–623.

    Google Scholar 

  • Stiling P, Moon D C. Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Oecologia, 2005, 142: 413–420.

    Article  PubMed  Google Scholar 

  • Stout M J, Brovont R A, Duffey S S. Effects of nitrogen availability on expression of constitiutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J. Chem. Ecol., 1998, 24: 945–963.

    Article  CAS  Google Scholar 

  • Thaler J S, Farag M A, Paré P W, et al. Jasmonatedeficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett., 2002, 5: 764–774.

    Article  Google Scholar 

  • Throop H L, Lerdau M T. Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems, 2004, 7: 109–133.

    Article  CAS  Google Scholar 

  • Traw M B, Dawson T E. Differential induction of trichomes by three herbivores of black mustard. Oecologia, 2002, 131: 526–532.

    Article  Google Scholar 

  • Treacy M F, Benedict J H, Walmsley M H, et al. Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton. Environ. Entomol., 1987, 16: 420–423.

    Google Scholar 

  • Turlings T C J, Benrey B. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience, 1998, 5: 321–333.

    Google Scholar 

  • van Emden H F. Host plant-aphidophaga interactions. Agr. Ecosyst. Environ., 1995, 52: 3–11.

    Article  Google Scholar 

  • van Wassenhove F A, Dirinck P J, Schamp N M, et al. Effects of nitrogen fertilizers on celery volatiles. J. Agr. Food Chem., 1990, 38: 220–226.

    Article  Google Scholar 

  • Walter D E. Living on leaves-mites, tomenta, and leaf domatia. Annu. Rev. Entomol., 1996, 21: 478–484.

    Google Scholar 

  • Weir B L, Kerby T A, Hake K D, et al. Cotton fertility // Hake, S.J., T.A. Kerby, K.D. Hake (eds.). Cotton Production Manual. Division of Agricultural and Natural Resources, California: University of California, 1996: 210–227.

    Google Scholar 

  • White T C R. The inadequate environment: nitrogen and the abundance of animals. Springer-Verlag, Berlin, Germany, 1993.

    Google Scholar 

  • Whitman D W. Plant bodyguards: mutualistic interactions between plants and the third trophic levels. / /T. N. Ananthakrishnan (ed.). Functional dynamics of phytophagous insects. New Delhi: Oxford and IBH Publishing, 1994: 133–159.

    Google Scholar 

  • Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 2003, 64: 3–19

    Article  PubMed  CAS  Google Scholar 

  • Williams I S. Slow-growth, high-mortality-a general hypothesis, or is it? Ecol. Entomol., 1999, 24: 490–495.

    Article  Google Scholar 

  • Yukawa J. Synchronization of gallers with host plant phenology. Popul. Ecol., 2000, 42: 105–113.

    Article  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, et al. Cyanogenic glucosides and plant-insect interactions. Phytochemistry, 2004, 65: 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z P, Baldwin I T. Transport of [2–14C]jasmonic acid from leaves to roots mimics woundinduced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta, 1997, 203: 436–441.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Y., Ni, X. (2011). Nitrogen Modulation on Plant Direct and Indirect Defenses. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_5

Download citation

Publish with us

Policies and ethics