Skip to main content

Insect Herbivory-Inducible Proteins Confer Post-Ingestive Plant Defenses

  • Chapter
Recent Advances in Entomological Research

Abstract

Plants can accumulate a wide variety of compounds in their tissues, constitutively and/or after induction, that confer resistance to herbivorous insects. Applications of microarray and proteomic technologies show a broad array of proteins are involved in plant defense against herbivores. These insect herbivory-inducible proteins may be regulated by multiple signaling pathways through the action of plant hormones such as jasmonic acid, salicylic acid and ethylene, which are tailored to specific insect feeding morphologies and physiologies. Best studied is a group of jasmonate- and feeding-regulated proteins that target and interfere with digestive and absorptive processes of the insect digestive canal, thus playing a critical role in post-ingestive plant defense. This review will highlight recent work and discuss the function of plant proteins in recognition and response to insect herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdeen A, Virgos A, Olivella E, et al. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Molecular Biology, 2005, 57: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Ahn J E, Guarino L A, Zhu-Salzman K. Seven-up facilitates insect counter-defense by suppressing cathepsin B expression. Febs. J., 2007, 274: 2800–2814.

    Article  PubMed  CAS  Google Scholar 

  • Ahn J E, Lovingshimer M R, Salzman R A, et al. Cowpea bruchid Callosobruchus maculatus counteracts dietary protease inhibitors by modulating propeptides of major digestive enzymes. Insect Mol. Biol., 2007, 16: 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Ahn J E, Salzman R A, Braunagel S C, et al. Functional roles of specific bruchid protease isoforms in adaptation to a soybean protease inhibitor. Insect Molecular Biology, 2004, 13: 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Amirhusin B, Shade R E, Koiwa H, et al. Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil. Journal of Economic Entomology, 2004, 97: 2095–2100.

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Bell E, Sadka A, et al. Arabidopsis thaliana Atvsp is homologous to soybean Vspa and Vspb, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Molecular Biology, 1995, 27: 933–942.

    Article  PubMed  CAS  Google Scholar 

  • Bones A M, Rossiter J T. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 1996, 97: 194–208

    Article  CAS  Google Scholar 

  • Bown D P, Wilkinson H S, Gatehouse J A. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigara, are members of complex multigene families. Insect Biochemistry and Molecular Biology, 1997, 27: 625–638.

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F, Cloutier C, Michaud D. Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Archives of Insect Biochemistry and Physiology, 2004, 55: 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F, Girard C, Cloutier C, et al. A hybrid, broadspectrum inhibitor of Colorado potato beetle aspartate and cysteine digestive proteinases. Archives of Insect Biochemistry and Physiology, 2005, 60: 20–31.

    Article  PubMed  CAS  Google Scholar 

  • Brunelle F, Nguyen-Quoc B, Cloutier C, et al. Protein hydrolysis by Colorado potato beetle, Leptinotarsa decemlineata, digestive proteases: The catalytic role of cathepsin D. Archives of Insect Biochemistry and Physiology, 1999, 42: 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Zhao J Z, Tang J D, et al. Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theoretical and Applied Genetics, 2002, 105: 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Chao W S, Gu Y Q, Pautot V, et al. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology, 1999, 120: 979–992.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Gonzales-Vigil E, Wilkerson C G, et al. Stability of plant defense proteins in the gut of insect herbivores. Plant Physiology, 2007, 143: 1954–1967.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wilkerson C G, Kuchar J A, et al. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 19237–19242.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Peumans W J, Hause B, Bras J, Kumar M, Proost P, Barre A, Rouge P, Van Damme E J M. Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharidebinding lectin in tobacco leaves. Faseb Journal, 2002, 16: 905–907.

    PubMed  CAS  Google Scholar 

  • Chrispeels M J, Raikhel N V. Lectins, Lectin genes, and their role in plant defense. Plant Cell, 1991, 3: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cloutier C, Jean C, Fournier M, et al. Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Archives of Insect Biochemistry and Physiology, 2000, 44: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Constabel C P, Ryan C A. A survey of wound-and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry, 1998, 47: 507–511.

    Article  CAS  Google Scholar 

  • De Leo F, Bonade-Bottino M A, Ceci L R, et al. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiology, 1998, 118: 997–1004.

    Article  PubMed  Google Scholar 

  • Doares S H, Narvaezvasquez J, Conconi A, et al. Salicylic-acid inhibits synthesis of proteinaseinhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology, 1995, 108: 1741–1746.

    PubMed  CAS  Google Scholar 

  • Edmonds H S, Gatehouse L N, Hilder V A, et al. The inhibitory effects of the cysteine protease inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata howardi). Entomologia Experimentalis Et Applicata, 1996, 78: 83–94

    Article  CAS  Google Scholar 

  • Ellis C, Turner J G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 2001, 13: 1025–1033.

    Article  PubMed  CAS  Google Scholar 

  • Felton G W. Indigestion is a plant’s best defense. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 18771–18772.

    Article  PubMed  CAS  Google Scholar 

  • Felton G W, Donato K K, Broadway RM, et al. Impact of oxidized plant phenolics on the nutritional quality of dietary-protein to a noctuid herbivore, Spodoptera-Exigua. Journal of Insect Physiology, 1992, 38: 277–285.

    Article  CAS  Google Scholar 

  • Fitches E, Gatehouse J A. A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). Journal of Insect Physiology, 1998, 44: 1213–1224.

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse J A. Biotechnological prospects for engineering insectresistant plants. Plant Physiology, 2008, 146: 881–887.

    Article  PubMed  CAS  Google Scholar 

  • Green T R, Ryan C A. Wound-induced proteinase inhibitor in plant leaves-possible defense mechanism against insects. Science, 1972, 175: 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Halpin. Gene stacking in transgenic plants — the challenge for 21st century plant biotechnology. Plant Biotechnology Journal, 2005, 3: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Harsulkar A M, Giri A P, Patankar A G, et al. Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiology, 1999, 121: 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Inanaga H, Kobayasi D, Kouzuma Y, et al. Protein engineering of novel proteinase inhibitors and their effects on the growth of Spodoptera exigua larvae. Bioscience Biotechnology and Biochemistry, 2001, 65: 2259–2264.

    Article  CAS  Google Scholar 

  • Johnson K S, Felton G W. Physiological and dietary influences on midgut redox conditions in generalist lepidopteran larvae. Journal of Insect Physiology, 1996, 42: 191–198.

    Article  CAS  Google Scholar 

  • Johnson K S, Felton G W. Digestive proteinase activity in corn earworm (Helicoverpa zea) after molting and in response to lowered redox potential. Archives of Insect Biochemistry and Physiology, 2000, 44: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bakker P L, Peters J, et al. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 8041–8045.

    Article  PubMed  CAS  Google Scholar 

  • Jongsma M A, Bolter C. The adaptation of insects to plant protease inhibitors. Journal of Insect Physiology, 1997, 43: 885–895.

    Article  PubMed  CAS  Google Scholar 

  • Kempema L A, Cui X P, Holzer F M, et al. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143: 849–865.

    Article  PubMed  CAS  Google Scholar 

  • Koiwa H, Shade R E, Zhu-Salzman K, et al. Phage display selection can differentiate insecticidal activity of soybean cystatins. Plant Journal, 1998, 14: 371–379.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiology, 2008, 147: 1358–1368.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ. Cross talk in defense signaling. Plant Physiology, 2008, 146: 839–844.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Xie Q G, Smith-Becker J, et al. Mi-1-mediated aphid resistance involves salicylic acid and mitogenactivated protein kinase signaling cascades. Molecular Plant-Microbe Interactions, 2006, 19: 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Li X C, Schuler M A, Berenbaum M R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 2002, 419: 712–715.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y L, Ahn J E, Datta S, et al. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiology, 2005, 139: 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y L, Salzman R A, Pankiw T, et al. Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N. Insect Biochemistry and Molecular Biology, 2004, 34: 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Macintosh S C, Kishore G M, Perlak F J, et al. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. Journal of Agricultural and Food Chemistry, 1990, 38: 1145–1152.

    Article  CAS  Google Scholar 

  • Maqbool S B, Riazuddin S, Loc N T, et al. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding, 2001, 7: 85–93.

    Article  CAS  Google Scholar 

  • Mazumdar-Leighton S, Broadway R M. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochemistry and Molecular Biology, 2001, 31: 645–657.

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman R A, Bell E, et al. Jasmonate is essential for insect defense Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 5473–5477.

    Article  PubMed  CAS  Google Scholar 

  • Mehlo L, Gahakwa D, Nghia P T, et al. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 7812–7816.

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Ma P W, Williams W P, et al. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PLoS ONE, 2008, 3: e1786.

    Article  PubMed  Google Scholar 

  • Mohan S, Ma P W K, Pechan T, et al. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. Journal of Insect Physiology, 2006, 52: 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Moran P J, Cheng Y F, Cassell J L, et al. Gene expression profiling of Arabidopsis thaliana in compatible plantaphid interactions. Archives of Insect Biochemistry and Physiology, 2002, 51: 182–203.

    Article  PubMed  CAS  Google Scholar 

  • Murdock L L, Shade R E. Lectins and protease inhibitors as plant defenses against insects. Journal of Agricultural and Food Chemistry, 2002, 50: 6605–6611.

    Article  PubMed  CAS  Google Scholar 

  • Musser R O, Hum-Musser S M, Eichenseer H, et al. Herbivory: Caterpillar saliva beats plant defences-A new weapon emerges in the evolutionary arms race between plants and herbivores. Nature, 2002, 416: 599–600.

    Article  PubMed  CAS  Google Scholar 

  • ODonnell P J, Calvert C, Atzorn R, et al. Ethylene as a signal mediating the wound response of tomato plants. Science, 1996, 274: 1914–1917.

    Article  CAS  Google Scholar 

  • Oppert B, Morgan T D, Culbertson C, et al. Dietary mixtures of cysteine and serine proteinase inhibitors exhibit synergistic toxicity toward the red flour beetle, Tribolium castaneum. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology, 1993, 105: 379–385.

    Article  Google Scholar 

  • Oppert B, Morgan T D, Hartzer K, et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2003, 134: 481–490.

    Article  CAS  Google Scholar 

  • Outchkourov N S, de Kogel W J, Wiegers G L, Abrahamson M, Jongsma M A. Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Franklinielia occidentalis) in greenhouse trials. Plant Biotechnology Journal, 2004, 2: 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin I T. Co(i)-ordinating defenses: NaCOI1 mediates herbivoreinduced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant Journal, 2007, 51: 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Pechan T, Cohen A, Williams W P, et al. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 13319–13323.

    Article  PubMed  CAS  Google Scholar 

  • Pechan T, Ye L J, Chang Y M, et al. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other lepidoptera. Plant Cell, 2000, 12: 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N, et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Applied and Environmental Microbiology, 1996, 62: 3581–3586.

    PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, et al. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell, 2004, 16: 3132–3147.

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1998, 1: 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 2000, 12: 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Roush RT. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998, 353: 1777–1786.

    Article  CAS  Google Scholar 

  • Ryan C A. Protease inhibitors in plants-genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 1990, 28: 425–449.

    Article  CAS  Google Scholar 

  • Schmelz E A, Carroll M J, LeClere S, et al. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 8894–8899.

    Article  PubMed  CAS  Google Scholar 

  • Schwachtje J, Baldwin I T. Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 2008, 146: 845–851.

    Article  PubMed  CAS  Google Scholar 

  • Silva C P, Xavier-Filho J. Comparison between the levels of aspartic and cysteine proteinases of the larval midguts of Callosobruchus maculatus (F.) and Zabrotes subfasciatus (BOH.) (Coleoptera: bruchidae). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1991, 99: 529–533.

    Article  Google Scholar 

  • Srinivasan A, Giri A P, Harsulkar A M, et al. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Molecular Biology, 2005, 57: 359–374.

    Article  PubMed  CAS  Google Scholar 

  • Staswick P E. Storage proteins of vegetative plant-tissue. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45: 303–322.

    Article  CAS  Google Scholar 

  • Stotz H U, Pittendrigh B R, Kroymann J, et al. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiology, 2000, 124: 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  • Terra W R, Ferreira C. Insect digestive enzymes-properties, compartmentalization and function. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1994, 109: 1–62.

    Article  Google Scholar 

  • Thie N M R, Houseman J G. Identification of cathepsin B, cathepsin D and cathepsin H in the larval midgut of colorado potato beetle, Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Insect Biochemistry, 1990, 20: 313–318.

    Article  CAS  Google Scholar 

  • Thompson G A, Goggin F L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany, 2006, 57: 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Urwin P E, McPherson M J, Atkinson H J. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta, 1998, 204: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Van Damme E J M, Peumans W J, Barre A, et al. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences, 1998, 17: 575–692.

    Article  Google Scholar 

  • Vinokurov K S, Elpidina E N, Oppert B, et al. Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2006, 145: 126–137.

    Article  CAS  Google Scholar 

  • Voelckel C, Baldwin I T. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant Journal, 2004, 38: 650–663.

    Article  PubMed  CAS  Google Scholar 

  • Walling L L. Recycling or regulation? The role of amino-terminal modifying enzymes. Current Opinion in Plant Biology, 2006, 9: 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Walling L L. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiology, 2008, 146: 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Wang J H, Constabel C P. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta, 2004, 220: 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Zarate S I, Kempema L A, Walling L L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 2007, 143: 866–875.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Bi J L, Liu T-X. Molecular strategies of plant defense and insect counter-defense. Insect Scinece, 2005, 12: 3–15.

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Koiwa H, Salzman R A, et al. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Molecular Biology, 2003, 12: 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Luthe D S, Felton G W. Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol., 2008, 146: 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman R A, Ahn J E, et al. Transcriptional regulation of sorghum defense determinants against a phloemfeeding aphid. Plant Physiology, 2004, 134: 420–431.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman R A, Koiwa H, et al. Ethylene negatively regulates local expression of plant defense lectin genes. Physiologia Plantarum, 1998, 104: 365–372.

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Shade R E, Koiwa H, et al. Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 15123–15128.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu-Salzman, K., Liu, T. (2011). Insect Herbivory-Inducible Proteins Confer Post-Ingestive Plant Defenses. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_2

Download citation

Publish with us

Policies and ethics