Skip to main content

Potential Use of Proteinase Inhibitors, Avidin, and other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt

  • Chapter
Recent Advances in Entomological Research

Abstract

After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insects. Once activated, the Bt proteins need to bind to midgut brush border membrane vesicle (BBMV) to cause gut lining lesions and eventually death in the target insect. A few bio-reagents may interact with the Bt binding to the receptors. By applying proteinase inhibitors to Bt-containing (sublethal dose) diet, the growth and development of Helicoverpa zea were significantly decreased when compared with the Bt only control. Midgut samples tested against the substrates for major midgut enzymes showed significant decreases in the protease activity of larvae fed Bt plus inhibitor versus control. Avidin, causing sequestration of biotin and vitamin deficiency, potentially interacts with Bt by binding to biotin-containing proteins. Besides possessing insecticidal toxicity itself, avidin at a sublethal dose could significantly synergize Bt toxicity against H. zea larvae. Because of different modes of action from that of Bt, proteinase inhibitors, avidin, and other bio-reagents could be used to enhance Bt performance, delay resistance development to Bt, and expand control range beyond lepidopterans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott WS. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 1925, 18: 265–267.

    CAS  Google Scholar 

  • Allsopp P G, McGhie T K. Snowdrop and wheatgerm lectins and avidin as antimetabolites for the control of sugarcane whitegrubs. Entomol. Exp. Appl., 1996, 80: 409–414.

    Article  CAS  Google Scholar 

  • Applebaum S W. Biochemistry of digestion. // Kerkut G A and Gilbert L I. Comprehensive Insect Physiology, Biochemistry and Pharmacology. New York: Pergamon Press, 1985, 4: 279–311.

    Google Scholar 

  • Benedict J H, Altman DW. Commercialization of Transgenic Cotton Expressing Insecticidal Crystal Protein. // Jenkins J N and Saha S. Genetic Improvement of Cotton. Enfield: Science Publ., 2001.

    Google Scholar 

  • Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Burgess E P J, Malone L A, Christeller J T, et al. Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, Helicoverpa armigera and Spodoptera litura. Transgenic Res., 2002, 11: 185–198.

    Article  PubMed  CAS  Google Scholar 

  • Du C, Nickerson KW. The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins. Appl. Environ. Microbiol., 1996, 62: 2932–2939.

    PubMed  CAS  Google Scholar 

  • Forcada C, Alcácer E, Garcera M D, et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch. Insect Biochem. Physiol., 1996, 31: 257–272.

    Article  CAS  Google Scholar 

  • Frugoni J A C. Tampone universale di Britton e Robinson a forza ionica costante. Gaz. Chim. Ital., 1957, 87: 403–407.

    CAS  Google Scholar 

  • Gahan L J, Gould F, Heckel D G. Identification of a Gene Associated with Bt Resistance in Heliothis virescens. Science, 2001, 293: 857–860.

    Article  PubMed  CAS  Google Scholar 

  • Gould F, Anderson A, Reynolds A, et al. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol., 1995, 88: 1545–1559.

    CAS  Google Scholar 

  • Gould F, Anderson A, Jones A, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA, 1997, 94: 3519–3523.

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Boulter D. Genetic engineering of crop plants for insect resistance-a critical review. Crop Protec., 1999, 18: 177–191.

    Article  Google Scholar 

  • Jongsma M. Novel Genes for Control and Deterrence of Sucking Insect Pests, ISB News Report. Oct. 2004. http://www.isb.vt.edu/news/2004/artspdf/nov0401.pdf, 2004.

    Google Scholar 

  • Keller M, Sneh B, Strizhov N, et al. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem. Molec. Biol., 1996, 26: 365–373.

    Article  CAS  Google Scholar 

  • Kramer K J. Putting a chicken gene into corn results in an insectresistant transgenic grain, pp. FF1–FF4. // Cherry J P and Pavlath A E. Proceedings of the US-Japan Cooperative Program in Natural Resources, Nov. 19–25, 2000. Cooperative Program in Natural Resources. 2000.

    Google Scholar 

  • Kramer K J. Avidin: An egg-citing insecticidal protein in transgenic corn. // Liang G H and Skinner D Z. Genetically Modified Crops: Their Development, Uses, and Risks. Binghamton: Haworth Press, Inc., 2004: 119–130.

    Google Scholar 

  • Kramer K J, Morgan T D, Throne J E, et al. Transgenic avidin maize is resistant to storage insect pests. Nature Biotech., 2000, 18: 670–674.

    Article  CAS  Google Scholar 

  • Levinson J N, Bergmann E D. Vitamin deficiencies in the housefly produced by antivitamins. J. Insect Physiol., 1959, 3: 293–305.

    Article  CAS  Google Scholar 

  • Li H, Oppert B, Higgins R A, et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and-susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem. Molec. Biol., 2004, 34: 753–762.

    Article  Google Scholar 

  • Li H, Oppert B, Higgins R A, et al. Characterization of cDNAs encoding three trypsin-like proteinases and mRNA quantitative analyses in Btresistant and-susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem. Molec. Biol., 2005, 35: 847–860.

    Article  CAS  Google Scholar 

  • Littell R C, Milliken G A, Stroup W W, et al. SAS system for mixed models. SAS institute, Cary, NC, 1996.

    Google Scholar 

  • Liu M, Dai J, Yu Z. Screening on chemical synergistic factors to Bt (Bacillus thuringiensis) oil formulation. J. Huazhong Agri. Univ., 2000, 19: 134–137.

    CAS  Google Scholar 

  • Markwick N P, Christeller J T, Docherty L C, et al. Insecticidal activity of Avidin and streptavidin against four species of pest Lepidoptera. Entomol. Exp. Appl., 2001, 98: 59–66.

    Article  CAS  Google Scholar 

  • Markwick N P, Docherty L C, Phung M M, et al. Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res., 2003, 12: 671–681.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Ramírez A C, Real M D. Proteolytic processing of Bacillus thuringiensis CryIIIA toxin and specific binding to brushborder membrane vesicles of Leptinotarsa decemlineata (Colorado potato beetle). Pestic. Biochem. Physiol., 1996, 54: 115–122.

    Article  Google Scholar 

  • Meng F, Shen J, Zhou W, et al. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Huebner) (Lepidoptera: Noctuidae). Pest Manage. Sci., 2004, 60: 167–172.

    Article  CAS  Google Scholar 

  • Milne R, Kaplan H. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of δ-endotoxin from Bacillus thuringiensis. Insect Biochem. Molec. Biol., 1993, 23: 663–673.

    Article  CAS  Google Scholar 

  • Morgan T D, Oppert B, Czapla T H, et al. Avidin and streptavidin as insecticidal and growth inhibiting dietary proteins. Entomol. Exp. Appl., 1993, 69: 97–108.

    Article  CAS  Google Scholar 

  • Oppert B, Kramer K J, Johnson D E, et al. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochem. Molec. Biol., 1996, 26: 571–583.

    Article  CAS  Google Scholar 

  • Oppert B, Kramer K J, Beeman R W, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem., 1997, 272: 23473–23476.

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Huang Z, Huang B, et al. Effect of additives on Bacillus thuringiensis for controlling Plutella xylostella. Chinese J. Biol. Ctrl., 2002, 18: 62–66.

    Google Scholar 

  • SAS Institute. 1997. User’s manual, version 6.12. SAS Institute, Cary, NC.

    Google Scholar 

  • Shao Z, Cui Y, Liu X, et al. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Inverte. Pathol., 1998, 72: 73–81.

    Article  CAS  Google Scholar 

  • Snodgrass G L. Insecticide resistance in field populations of the tarnished plant bug (Heteroptera: Miridae) in cotton in the Mississippi Delta. J. Econ. Entomol., 1996, 89: 783–790.

    CAS  Google Scholar 

  • Snodgrass G L, Scott W P. Seasonal changes in pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations during a three year period in the Delta area of Arkansas, Louisiana, and Mississippi. J. Econ. Entomol., 2000, 93: 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik B E. Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol., 1994, 39: 47–79.

    Article  Google Scholar 

  • Tabashnik B E, Liu Y, Dennehy T J, et al. Inheritance of Resistance to Bt Toxin Cry1Ac in a Field-Derived Strain of Pink Bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol., 2002, 95: 1018–1026.

    Article  PubMed  CAS  Google Scholar 

  • Terra W R, Ferriera C. Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol., 1994, 109B: 1–62.

    CAS  Google Scholar 

  • Wang M, Yin X, Guo X, et al. Study on synergism of addition of inorganic salts to Bacillus thuringiensis preparations preventing and curing Helicoverpa armigera. Acta Agri. Univ. Henanensis., 1999, 33: 186–189.

    CAS  Google Scholar 

  • Williams M R. Cotton insect loss estimates-2004. // Dugger P and Richter D A. Proc. 2004 Beltwide Cotton Conf., National Cotton Council, Memphis, TN. 2005.

    Google Scholar 

  • Zhu Y C, Adamczyk Jr J J, West S. Avidin, a Potential Bio-Pesticide and Synergist to Bacillus thuringiensis Berliner Toxins against Field Crop Insects. J. Econ. Entomol., 2005, 98: 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y C, Abel C A, Chen M S. Interaction of Cry1Ac toxin (Bacillus thuringiensis) and proteinase inhibitors on the growth, development, and midgut proteinase activities of the bollworm, Helicoverpa zea. Pesticide Biochem. Physiol., 2007, 87: 39–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, Y., Chen, M., Abel, C.A. (2011). Potential Use of Proteinase Inhibitors, Avidin, and other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt. In: Liu, T., Kang, L. (eds) Recent Advances in Entomological Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17815-3_19

Download citation

Publish with us

Policies and ethics