Skip to main content

Formal-Language-Oriented Foundation of Dynamics of Human Crowds Using Topos-Theory

  • Chapter
Innovations in Defence Support Systems -2

Part of the book series: Studies in Computational Intelligence ((SCI,volume 338))

  • 847 Accesses

Abstract

In contemporary neuro-quantum studies, the following main idea has been established: motion of a human body obeys the laws of Newtonian physics, while motion of human mind can be formally described only by the laws of quantum physics. From this psycho–physical modeling perspective, a general dynamics of human crowds can be divided into two categories: a relatively simplistic crowd mechanics, concerning only with the physical motion of individual agents, aggregates and a crowd as a whole; and a complex cognitive behavior of a crowd, which incorporates motivational cognition into the crowd mechanics. In this paper we will attempt to provide a topos-theoretic foundation for both crowd mechanics and general crowd behavior. For this we will use a general formal-language framework, in which crowd mechanics is described by a propositional language, while crowd behaviour is described by a higher-order typed language. This framework naturally leads to the category of complex systems and general crowd behavioral dynamics in a general topos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ivancevic, V., Ivancevic, T.: Human–Like Biomechanics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific, Singapore (2006)

    Google Scholar 

  3. Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Dordrecht (2006)

    Book  MATH  Google Scholar 

  4. Ivancevic, V., Ivancevic, T.: Applied Differfential Geometry: A Modern Introduction. World Scientific, Singapore (2007)

    Book  Google Scholar 

  5. Freeman, W.J., Vitiello, G.: Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life Rev. 2(3), 93–118 (2006)

    Article  Google Scholar 

  6. Umezawa, H.: Advanced field theory: micro macro and thermal concepts. Am. Inst. Phys., New York (1993); Wiener, N.: Cybernetics. Wiley, New York (1961)

    MATH  Google Scholar 

  7. Frölich, H., Kremer, F.: Coherent Excitations in Biological Systems. Springer, New York (1983)

    Google Scholar 

  8. Penrose, R.: The Emperor’s New Mind. Oxford Univ. Press, Oxford (1989)

    Google Scholar 

  9. Penrose, R.: Shadows of the Mind. Oxford Univ. Press, Oxford (1994)

    Google Scholar 

  10. Hameroff, S.R.: Quantum coherence in microtubules: A Neural basis for emergent consciousness. J. Consc. Studies 1(1), 91–118 (1994)

    Google Scholar 

  11. Hameroff, S.R., Penrose, R.: Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. In: Hameroff, S.R., Kaszniak, A.W., Scott, A.C. (eds.) Toward a Science of Consciousness: the First Tucson Discussion and Debates, pp. 507–539. MIT Press, Cambridge (1996)

    Google Scholar 

  12. Hameroff, S.R.: Quantum computation in brain microtubules? The Penrose-Hameroff “Orch OR” model of consciousness. Phil. Trans. Roy. Soc. London (A) 356, 1869–1896 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hagan, S., Hameroff, S.R., Tuszynski, J.A.: Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. D 65, 61901 (2002)

    Google Scholar 

  14. Pribram, K.: Brain and the composition of conscious experience. J. Consc. Studies 6(5), 12–18 (1999)

    Google Scholar 

  15. Pribram, K.: Holonomic brain theory. Scholarpedia 2(5), 2735 (2007)

    Article  Google Scholar 

  16. Ivancevic, V.G., Ivancevic, T.T.: Quantum Neural Computation. Springer, Heidelberg (2009)

    Google Scholar 

  17. Ivancevic, V.G., Ivancevic, T.T.: Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  18. Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd Behavior Dynamics: Entropic Path-Integral Model. Nonl. Dyn. 59, 351–373 (2010)

    Article  MATH  Google Scholar 

  19. Ivancevic, V.G., Reid, D.J.: Entropic Geometry of Crowd Dynamics. In: Evans, T. (ed.) Nonlinear Dynamics, Intech, Wiena (2010)

    Google Scholar 

  20. Ivancevic, V.G., Reid, D.J.: Geometrical and Topological Duality in Crowd Dynamics. Int. J. Biomath. (in press)

    Google Scholar 

  21. Ivancevic, V., Aidman, E.: Life-space foam: A medium for motivational and cognitive dynamics. Physica A 382, 616–630 (2007)

    Article  Google Scholar 

  22. Ivancevic, V., Aidman, E., Yen, L.: Extending Feynman’s Formalisms for Modelling Human Joint Action Coordination. Int. J. Biomath. 2(1), 1–7 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ivancevic, V.G., Reid, D.J.: Dynamics of Confined Crowds Modelled using Entropic Stochastic Resonance and Quantum Neural Networks. Int. Def. Sup. Sys. 2(4), 269–289 (2009)

    Google Scholar 

  24. Barr, M., Wells, C.: Toposes, Triples and Theories. Reprints in The. Appl. Cat. 1, 1–289 (2005)

    Google Scholar 

  25. Illusie, L.: What is a Topos. Notices of AMS 51(9), 1060–1061 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Lawvere, W., Schanuel, S.: Conceptual Mathematics: A First Introduction to Categories. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  27. Lawvere, F.W.: Continuously variable sets: algebraic geometry = geometric logic. In: Proceedings Logic Colloquium Bristol 1973. North-Holland, Amsterdam (1975)

    Google Scholar 

  28. Bell, J.L.: Toposes and Local Set Theories. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  29. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, London (1992)

    Google Scholar 

  30. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  31. Intuitionistic Logic, Stanford Encyclopedia of Phylosophy. Stanford Univ., Stanford (2009)

    Google Scholar 

  32. Balbes, R., Dwinger, P.: Distributive Lattices. Univ. Missouri Press, Columbia (1974)

    MATH  Google Scholar 

  33. Borceux, F.: Handbook of Categorical Algebra 3. In: Encyclopedia of Mathematics and its Applications, vol. 53. Cambridge Univ. Press, Cambridge (1994)

    Google Scholar 

  34. Isham, C.J.: Topos theory and consistent histories: The internal logic of the set of all consistent sets. Int. J. Theor. Phys. 36, 785–814 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Isham, C.J.: A New Approach to Quantising Space-Time: I. Quantising on a General Category. Adv. Theor. Math. Phys. 7, 331–367 (2003)

    MATH  MathSciNet  Google Scholar 

  36. Isham, C.J.: A New Approach to Quantising Space-Time: II. Quantising on a Category of Sets. Adv. Theor. Math. Phys. 7, 807–829 (2004)

    MathSciNet  Google Scholar 

  37. Isham, C.J.: A New Approach to Quantising Space-Time: III. State Vectors as Functions on Arrows. Adv. Theor. Math. Phys. 8, 797–811 (2004)

    MathSciNet  Google Scholar 

  38. Döring, A., Isham, C.J.: A topos foundation for theories of physics: I. Formal Languages for Physics. J. Math. Phys. 49, 53515 (2008)

    Article  Google Scholar 

  39. Döring, A., Isham, C.J.: A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. J. Math. Phys. 49, 53516 (2008)

    Article  Google Scholar 

  40. Döring, A., Isham, C.J.: A topos foundation for theories of physics: III. Quantum theory and the representation of physical quantities with arrows \(\breve{\delta}^\circ\)(A): \(\underline{\Sigma}\rightarrow\underline{{R^{\underline{\succ}}}}\). J. Math. Phys. 49, 53517 (2008)

    Article  Google Scholar 

  41. Döring, A., Isham, C.J.: A topos foundation for theories of physics: IV. Categories of systems. J. Math. Phys. 49, 53518 (2008)

    Article  Google Scholar 

  42. Döring, A.: Topos Theory and ‘Neo-Realist’ Quantum Theory. In: Fauser, B., et al. (eds.) Quantum Field Theory. Birkhauser Verlag, Basel (2009)

    Google Scholar 

  43. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40, 37–111 (1936)

    MATH  MathSciNet  Google Scholar 

  44. Mac Lane, S.: Natural associativity and commutativity. Rice University Studies, Papers in Mathematics 49, 28–46 (1963)

    MathSciNet  Google Scholar 

  45. Dosen, K., Petric, Z.: The Maximality of Cartesian Categories. Math. Logic Quart. 47, 137–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  46. Dosen, K., Petric, Z.: Proof-Theoretical Coherence. Studies in Logic 1. King’s College Publ., London (2004)

    MATH  Google Scholar 

  47. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge Univ. Press, Cambridge (1986)

    MATH  Google Scholar 

  48. Dosen, K., Petric, Z.: Bicartesiaan Coherence. Studia Logica 71, 331–353 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lambek, J.: Deductive systems and categories I: Syntactic calculus and residuated categories. Mathematical Systems Theory 2, 287–318 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lambek, J.: Deductive systems and categories II: Standard constructions and closed categories. In: Category Theory, Homology Theory and their Applications I. Lecture Notes in Mathematics, vol. 86, pp. 76–122. Springer, Berlin (1969)

    Chapter  Google Scholar 

  51. Lambek, J.: Deductive systems and categories III: Cartesian closed categories, intuitionist propositional calculus, and combinatory logic. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 57–82. Springer, Berlin (1972)

    Chapter  Google Scholar 

  52. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    Google Scholar 

  53. lang, S.: Algebra, 3rd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  54. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. North-Holland, London (1984)

    MATH  Google Scholar 

  55. Kock, A.: Synthetic Differential Geometry. LMS lecture note series, vol. 51. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  56. Dalla Chiara, M.L., Giuntini, R.: Quantum logics. In: Gabbay, G., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. VI, pp. 129–228. Kluwer, Dordrecht (2002)

    Google Scholar 

  57. Dowker, F.: Causal sets and the deep structure of space-time. arXiv.org/abs/gr-qc/0508109 (2005)

    Google Scholar 

  58. Eilenberg, S., Mac Lane, S.: General theory of natural equivalences. Transactions of the American Mathematical Society 58, 231–294 (1945)

    MATH  MathSciNet  Google Scholar 

  59. Switzer, R.K.: Algebraic Topology – Homology and Homotopy. In: Classics in Mathematics. Springer, New York (1975)

    Google Scholar 

  60. Stuart, J.: Calculus, 4th edn. Brooks/Cole Publ., Pacific Grove, CA (1999)

    Google Scholar 

  61. Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic Press, London (1983)

    MATH  Google Scholar 

  62. Dieudonne, J.A.: A History of Algebraic and Differential Topology 1900–1960. Birkháuser, Basel (1988)

    Google Scholar 

  63. Kan, D.M.: Adjoint Functors. Trans. Am. Math. Soc. 89, 294–329 (1958)

    MathSciNet  Google Scholar 

  64. Coecke, B.: Introducing categories to the practicing physicist. arXiv:physics.quant-ph.0808.1032 (2008)

    Google Scholar 

  65. Coecke, B., Oliver, E.: Categories for the practising physicist. arXiv:physics.quant-ph. arXiv:0905.3010 (2009)

    Google Scholar 

  66. Abramsky, S.: Categories, Proofs and Processes. Course at Oxford University Computing Laboratory (2002 → ...), Documentation and lecture notes web.comlab.ox.ac.uk/oucl/courses/topics05-06/cpp/

  67. Priest, G.: An Introduction to Non-Classical Logic, 2nd edn. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  68. Mints, G.: A Short Introduction to Intuitionistic Logic. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  69. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  70. Gabbay, D.: Semantical Investigations in Heyting’s Intuitionistic Logic. Springer, Heidelberg (2009)

    Google Scholar 

  71. Miller, D.: Critical Rationalism. Open Court Pub. Comp., Chicago (2003)

    Google Scholar 

  72. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge, 2nd edn. Routledge, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivancevic, V.G., Reid, D.J. (2011). Formal-Language-Oriented Foundation of Dynamics of Human Crowds Using Topos-Theory. In: Jain, L.C., Aidman, E.V., Abeynayake, C. (eds) Innovations in Defence Support Systems -2. Studies in Computational Intelligence, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17764-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17764-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17763-7

  • Online ISBN: 978-3-642-17764-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics