Skip to main content

The Role of Intracellular Ca2+ in Arrhythmias in the Postmyocardial Infarction Heart

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

Abnormalities in intracellular Ca2+ handling occur in both Purkinje and ventricular cells that have survived in the infarcted heart. Such abnormalities are presented and contrasted in this chapter. Interestingly, these changes differ depending on the cell type (IZPC vs. IZ) and contribute differently to the arrhythmogenicity of the postmyocardial infarction (MI) substrate. Thus, it is reasonable to assume that rational drug design could derive compounds against these intracellular Ca2+ changes that would be specific not only for the cell type, but also for the type of arrhythmias occurring post-MI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ter Keurs HEDJ, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev. 2007;87:457–506.

    Article  PubMed  Google Scholar 

  2. Brette F, Salle L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J. 2006;90:381–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for EC coupling. Am J Physiol. 1993;264:C1587–93.

    PubMed  CAS  Google Scholar 

  4. Cannell MB, Cheng H, Lederer WJ. Spatial nonuniformities in Cai during excitation contraction coupling in cardiac myocytes. Biophys J. 1994;67:1942–56.

    Article  PubMed  CAS  Google Scholar 

  5. Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4 dihydropyridine and ryanodine receptors. Circ Res. 1991;68:662–73.

    PubMed  CAS  Google Scholar 

  6. Shannon TR, Guo T, Bers DM. Ca2+ scraps: local depletions of free Ca2+ in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res. 2003;93:40–5.

    Article  PubMed  CAS  Google Scholar 

  7. Bers DM. Excitation–contraction coupling and cardiac contractile force. 1st ed. Dordrecht: Kluwer; 1991.

    Google Scholar 

  8. Kort AA, Lakatta EG. Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues. Circ Res. 1984;54:396–404.

    PubMed  CAS  Google Scholar 

  9. Lakatta EG, Lappe DL. Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle. J Physiol. 1981;315:369–94.

    PubMed  CAS  Google Scholar 

  10. Lakatta EG, Jewell BR. Length dependent activation. Its effect in the length tension relation in cat ventricular muscle. Circ Res. 1977;40:251–7.

    PubMed  CAS  Google Scholar 

  11. Stern MD, Capogrossi MC, Lakatta EG. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium. 1988;9(5–6):247–56.

    Article  PubMed  CAS  Google Scholar 

  12. Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers. J Physiol. 1976;263:73–100.

    PubMed  CAS  Google Scholar 

  13. Di Maio A, Ter Keurs HEDJ, Franzini-Armstrong C. T-tubular profiles in Purkinje fibres of mammalian myocardium. J Muscle Res Cell Motil. 2007;28:115–21.

    Article  PubMed  Google Scholar 

  14. Cordeiro JM, Spitzer KW, Giles W, Ershler PR, Cannell MB, Bridge JHB. Location of the initiation of calcium transients and sparks in rabbit Purkinje cells. J Physiol. 2001;531:301–14.

    Article  PubMed  CAS  Google Scholar 

  15. Sommer JR, Johnson EA. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968;36:497–526.

    Article  PubMed  CAS  Google Scholar 

  16. Jorgensen AO, Shen ACY, Arnold W, McPherson P, Campbell KP. The Ca2+ release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol. 1993;120:969–80.

    Article  PubMed  CAS  Google Scholar 

  17. Stuyvers BD, Dun W, Matkovich SJ, Sorrentino V, Boyden PA, Ter Keurs HEDJ. Ca2+ sparks and Ca2+ waves in Purkinje Cells: a triple layered system of activation. Circ Res. 2005;97:35–43.

    Article  PubMed  CAS  Google Scholar 

  18. Boyden PA, Pu J, Pinto JMB, Ter Keurs HEDJ. Ca2+ Transients and Ca2+ waves in Purkinje Cells. Role in action potential initiation. Circ Res. 2000;86:448–55.

    PubMed  CAS  Google Scholar 

  19. Boyden PA, Barbhaiya C, Lee T, Ter Keurs HEDJ. Nonuniform Ca2+ transients in arrhythmogenic Purkinje Cells that survive in the infarcted canine heart. Cardiovasc Res. 2003;57:681–93.

    Article  PubMed  CAS  Google Scholar 

  20. Boyden PA, Ter Keurs HEDJ. Reverse excitation–contraction coupling: Ca2+ ions as initiators of arrhythmias. J Cardiovasc Electrophysiol. 2001;12:382–5.

    Article  PubMed  CAS  Google Scholar 

  21. Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, O’Connell R, Berenfeld O, et al. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2007;101:1039–48.

    Article  PubMed  CAS  Google Scholar 

  22. Viatchenko-Karpinski S, Terentyev D, Gyorke I, Terentyeva R, Volpe P, Priori SG, et al. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin. Circ Res. 2004;94:471–7.

    Article  PubMed  CAS  Google Scholar 

  23. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69:1049–169.

    PubMed  CAS  Google Scholar 

  24. Pinto JMB, Boyden PA. Electrophysiologic remodeling in ischemia and infarction. Cardiovasc Res. 1999;42:284–97.

    Article  PubMed  CAS  Google Scholar 

  25. Boyden PA, Pinto JMB. Reduced calcium currents in subendocardial Purkinje myocytes that survive in the 24 and 48 hour infarcted heart. Circulation. 1994;89:2747–59.

    PubMed  CAS  Google Scholar 

  26. Friedman PL, Stewart JR, JJ Jr F, Wit AL. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs. Circ Res. 1973;33:597–611.

    PubMed  CAS  Google Scholar 

  27. Boyden PA, Dun W, Barbhaiya C, Ter Keurs HEDJ. 2APB- and JTV519(K201) sensitive micro Ca2+ waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm. 2004;1:218–26.

    Article  PubMed  Google Scholar 

  28. Pinto JMB, Sosunov EA, Gainullin RZ, Rosen MR, Boyden PA. The effects of mibefradil a T type calcium channel current antagonist on the electrophysiology of Purkinje fibers that have survived in the infarcted heart. J Cardiovasc Electrophysiol. 1999;10:1224–35.

    Article  PubMed  CAS  Google Scholar 

  29. Hirose M, Stuyvers BD, Dun W, Ter Keurs HED, Boyden PA. Function of Ca2+ release channels in Purkinje cells that survive in the infarcted canine heart; a mechanism for triggered Purkinje ectopy. Circ Arrhythm Electrophysiol. 2008;1:387–95.

    Article  PubMed  CAS  Google Scholar 

  30. Hirose M, Stuyvers BD, Dun W, Ter Keurs HEDJ, Boyden PA. Wide long lasting perinuclear Ca2+ release events generated by an Interaction between ryanodine and IP3 receptors in Canine Purkinje cell. J Mol Cell Cardiol. 2008;45:176–84.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang X-Q, Moore RL, Tenhave T, Cheung JY. (Ca++)i transients in hypertensive and postinfarction myocytes. Am J Physiol. 1995;269:C632–40.

    PubMed  CAS  Google Scholar 

  32. Wit AL, Janse MJ. The ventricular arrhythmias of ischemia and infarction. Electrophysiological mechanisms. Mount Kisco, NY: Futura Publishing; 1993.

    Google Scholar 

  33. Ursell PC, Gardner PI, Albala A, JJ Jr F, Wit AL. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res. 1985;56:436–51.

    PubMed  CAS  Google Scholar 

  34. Boyden PA, Gardner PI, Wit AL. Action potentials of cardiac muscle in healing infarcts: response to norepinephrine and caffeine. J Mol Cell Cardiol. 1988;20:525–37.

    Article  PubMed  CAS  Google Scholar 

  35. Aggarwal R, Boyden PA. Diminished calcium and barium currents in myocytes surviving in the epicardial border zone of the 5 day infarcted canine heart. Circ Res. 1995;77:1180–91.

    PubMed  CAS  Google Scholar 

  36. Koumi SI, Backer CL, Arentzen CE, Sato R. Beta-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. J Clin Invest. 1995;96:2870–81.

    Article  PubMed  CAS  Google Scholar 

  37. Kameyama M, Hofmann F, Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985;405:285–93.

    Article  PubMed  CAS  Google Scholar 

  38. Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC. Mechanisms of calcium channel modulation by beta adrenergic agents and dihydropyridine calcium agonist. J Mol Cell Cardiol. 1986;18:691–710.

    Article  PubMed  CAS  Google Scholar 

  39. Gaide MS, Myerburg RJ, Kozlovskis PL, Bassett AL. Elevated sympathetic response of epicardial proximal to healed myocardial infarction. Am J Physiol. 1983;245:H646–52.

    PubMed  CAS  Google Scholar 

  40. Mubagwa K, Flameng W, Carmeliet E. Resting and action potentials of nonischemic and chronically ischemic human ventricular muscle. J Cardiovasc Electrophysiol. 1994;5:659–71.

    Article  PubMed  CAS  Google Scholar 

  41. Pinto JMB, Yuan F, Wasserlauf BJ, Bassett AL, Myerburg RJ. Regional gradation of L-type calcium currents in the feline heart with a healed myocardial infarct. J Cardiovasc Electrophysiol. 1997;8:548–60.

    Article  PubMed  CAS  Google Scholar 

  42. Aggarwal R, Boyden PA. Altered pharmacologic responsiveness of reduced L-type calcium currents in myocytes surviving in the infarcted heart. J Cardiovasc Electrophysiol. 1996;7:20–35.

    Article  PubMed  CAS  Google Scholar 

  43. Steinberg SF, Zhang H, Pak E, Pagnotta G, Boyden PA. Characteristics of the beta-adrenergic receptor complex in the epicardial border zone of the 5-day infarcted canine heart. Circulation. 1995;91:2824–33.

    PubMed  CAS  Google Scholar 

  44. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, et al. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol. 2001;281:H1835–62.

    PubMed  CAS  Google Scholar 

  45. Yagi T, Boyden PA. The function of protein tyrosine kinases and L type Ca2+ currents in cells that have survived in the canine infarcted heart. J Cardiovasc Pharm. 2002;40:669–77.

    Article  CAS  Google Scholar 

  46. Hund TJ, Decker KF, Kanter E, Mohler PJ, Boyden PA, Schuessler RB, et al. Role of activated CaMKII in abnormal calcium homeostasis and INa remodeling after myocardial infarction: insights from mathematical modeling. J Med Cell Cardiol. 2008;45:420–8.

    Article  CAS  Google Scholar 

  47. Licata A, Aggarwal R, Robinson RB, Boyden PA. Frequency dependent effects on Cai transients, cell shortening in myocytes that survive in the infarcted heart. Cardiovasc Res. 1997;33:341–50.

    Article  PubMed  CAS  Google Scholar 

  48. Mohler PJ, Schott JJ, Gramolini AO, Dilly K, Guatimosim S, DuBell WH, et al. AnkyrinB mutation causes type4 longQT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–9.

    Article  PubMed  CAS  Google Scholar 

  49. Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res. 2009;81:742–9.

    Article  PubMed  CAS  Google Scholar 

  50. Pu J, Robinson RB, Boyden PA. Abnormalities in Cai handling in myocytes that survive in the infarcted heart are not just due to alterations in repolarization. J Med Cell Cardiol. 2000;32:1509–23.

    Article  CAS  Google Scholar 

  51. Aggarwal R, Pu J, Boyden PA. Ca2+ dependent outward currents in myocytes from the epicardial border zone of the 5 day infarcted heart. Am J Physiol. 1997;273:H1386–94.

    PubMed  CAS  Google Scholar 

  52. Pu J, Ruffy F, Boyden PA. Effects of Bay Y5959 on Ca2+ currents and intracellular Ca2+ in cells that have survived in the epicardial border zone of the infarcted canine heart. J Cardiovasc Pharm. 1999;33:929–37.

    Article  CAS  Google Scholar 

  53. Cabo C, Schmitt H, Wit AL. New mechanism of antiarrhythmic drug action: Increasing inward L type calcium current prevents reentrant tachycardia in the infarcted canine heart. Circulation. 2000;102:2417–25.

    PubMed  CAS  Google Scholar 

  54. Janvier NC, Boyett MR. The role of NaCa exchange current in the cardiac action potential. Cardiovasc Res. 1996;32:69–84.

    PubMed  CAS  Google Scholar 

  55. Zhang X-Q, Tillotson DL, Moore RL, Cheung JY. Na/Ca exchange currents and SR Ca2+ contents in postinfarction myocytes. Am J Physiol. 1996;271:C1800–7.

    PubMed  CAS  Google Scholar 

  56. Cheung JY, Musch TI, Misawa H, Semanchick A, Elensky M, Yelamarty RV, et al. Impaired cardiac function in rats with healed myocardial infarction: cellular vs. myocardial mechanisms. Am J Physiol. 1994;266:C29–36.

    PubMed  CAS  Google Scholar 

  57. Litwin SE, Bridge JHB. Enhanced NaCa exchange in the infarcted heart. Implications for excitation contraction coupling. Circ Res. 1997;81:1083–93.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant HL58860 from the National Heart Lung and Blood Institute Bethesda, Maryland and AHFMR grant (20040163), Canada (HtK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope A. Boyden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dun, W., ter Keurs, H., Boyden, P.A. (2011). The Role of Intracellular Ca2+ in Arrhythmias in the Postmyocardial Infarction Heart. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_16

Download citation

Publish with us

Policies and ethics