Skip to main content

Use of a Connection-Selection Scheme in Neural XCSF

  • Conference paper
Learning Classifier Systems (IWLCS 2009, IWLCS 2008)

Abstract

XCSF is a modern form of Learning Classifier System (LCS) that has proven successful in a number of problem domains. In this paper we exploit the modular nature of XCSF to include a number of extensions, namely a neural classifier representation, self-adaptive mutation rates and neural constructivism. It is shown that, via constructivism, appropriate internal rule complexity emerges during learning. It is also shown that self-adaptation allows this rule complexity to emerge at a rate controlled by the learner. We evaluate this system on both discrete and continuous-valued maze environments. The main contribution of this work is the implementation of a feature selection derivative (termed connection selection), which is applied to modify network connectivity patterns. We evaluate the effect of connection selection, in terms of both solution size and system performance, on both discrete and continuous-valued environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quartz, S.R., Sejnowski, T.J.: The Neural Basis of Cognitive Development: A Constructionist Manifesto. Behavioural and Brain Sciences 20(4), 537–596 (1997)

    Google Scholar 

  2. Edelman, G.: Neural Darwinism: The Theory of Neuronal Group Selection. Basic Books, New York (1987)

    Google Scholar 

  3. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology, vol. 4, pp. 263–293. Academic Press, New York (1976)

    Chapter  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Bull, L.: On Using Constructivism in Neural Classifier Systems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 558–567. Springer, Heidelberg (2002)

    Google Scholar 

  6. Wilson, S.W.: Function Approximation with a Classifier System. In: Spector, L.D., Wu, G.E.A., Langdon, W.B., Voight, H.M., Gen, M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 974–981. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Google Scholar 

  8. Bull, L., Hurst, J.: A Neural Learning Classifier System with Self-Adaptive Constructivism. In: IEEE Congress on Evolutionary Computation. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  9. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Bull, L., O’Hara, T.: Accuracy-based Neuro and Neuro-Fuzzy Classifier Systems. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Hanavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 905–911. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  11. Hurst, J., Bull, L.: A Neural Learning Classifier System with Self-Adaptive Constructivism for Mobile Robot Control. Artificial Life 12(3), 353–380 (2006)

    Article  Google Scholar 

  12. Giani, A., Baiardi, F., Starita, A.: PANIC: A Parallel Evolutionary Rule Based System. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, EP 1995 (1995)

    Google Scholar 

  13. O’Hara, T., Bull, L.: Prediction Calculation in Accuracy-based Neural Learning Classifier Systems. Tech report UWELCSG04-004 (2004)

    Google Scholar 

  14. Lanzi, P.L., Loiacono, D.: XCSF with Neural Prediction. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 2270–2276 (2006)

    Google Scholar 

  15. Dam, H.H., Abbass, H.A., Lokan, C., Yao, X.: Neural-Based Learning Classifier Systems. IEEE Trans. on Knowl. and Data Eng. 20(1), 26–39 (2008)

    Google Scholar 

  16. O’Hara, T., Bull, L.: Building Anticipations in an Accuracy-based Learning Classifier System by use of an Artificial Neural Network. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2046–2052. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  17. Pérez-Uribe, A., Sanchez, E.: FPGA Implementation of an Adaptable-Size Neural Network. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 383–388. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Watkins, C.J.C.H.: Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge, England (1989)

    Google Scholar 

  19. Wilson, S.W.: ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1), 1–18 (1994)

    Article  MathSciNet  Google Scholar 

  20. Bull, L., Hurst, J., Tomlinson, A.: Self-Adaptive Mutation in Classifier System Controllers. In: Meyer, J.-A., Berthoz, A., Floreano, D., Roitblatt, H., Wilson, S.W. (eds.) From Animals to Animats 6 – The Sixth International Conference on the Simulation of Adaptive Behaviour. MIT Press, Cambridge (2000)

    Google Scholar 

  21. Harvey, I., Husbands, P., Cliff, D.: Seeing the Light: Artificial Evolution, Real Vision. In: Cliff, D., Husbands, P., Meyer, J.-A., Wilson, S.W. (eds.) From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behaviour, pp. 392–401. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Hutt, B., Warwick, K.: Synapsing Variable-Length Crossover: Meaningful Crossover for Variable-Length Genomes. IEEE Transactions on Evolutionary Computation 11(1), 118–131 (2007)

    Article  Google Scholar 

  23. Rocha, M., Cortez, P., Neves, J.: Evolutionary Neural Network Learning. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 24–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: A survey of the state of the art. In: Whitley, D., Schaffer, J. (eds.) Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN 1992), pp. 1–37. IEEE Press, Piscataway (1992)

    Google Scholar 

  25. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting Topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  26. Stanley, K.O., Miikkulainen, R.: Competitive Coevolution through Evolutionary Complexification. Journal of Artificial Intelligence Research 2004(21), 63–100 (2002)

    Google Scholar 

  27. Basheer, A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 43(1) (2000)

    Google Scholar 

  28. Belue, L.M., Bauer Jr., K.W.: Determining input features for multilayer perceptrons. Neurocomputing 7, 111–121 (1995)

    Article  Google Scholar 

  29. Basak, J., Mitra, S.: Feature selection using radial basis function networks. Neural Comput. Appl. 8, 297–302 (1999)

    Article  Google Scholar 

  30. Whiteson, S., Stone, P., Stanley, K.O., Miikkulainen, R., Kohl, N.: Automatic feature selection in neuroevolution. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington DC, USA, June 25-29 (2005)

    Google Scholar 

  31. Tan, M., Hartley, M., Bister, M., Deklerck, R.: Automated feature selection in neuroevolution. Evolutionary Intelligence 1(4), 271–292 (2009)

    Article  Google Scholar 

  32. Rocha, M., Cortez, P., Neves, J.: Evolution of neural networks for classification and regression. Neurocomput. 70(16-18), 2809–2816 (2007)

    Article  Google Scholar 

  33. Howard, D., Bull, L., Lanzi, P.-L.: Self-Adaptive Constructivism in Neural XCS and XCSF. In: Keijzer, M., et al. (eds.) GECCO 2008: Proceedings of the Genetic and Evolutionary Computation Conference, ACM Press, New York (2008)

    Google Scholar 

  34. Lanzi, P.L.: An Analysis of Generalization in the XCS Classifier System. Evolutionary Computation 7(2), 125–149 (1999)

    Article  Google Scholar 

  35. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely approximating the value function. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 369–376. The MIT Press, Cambridge (1995)

    Google Scholar 

  36. Schlessinger, E., Bentley, P.J., Lotto, R.B.: Analysing the Evolvability of Neural Network Agents through Structural Mutations. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 312–321. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Howard, G.D., Bull, L., Lanzi, PL. (2010). Use of a Connection-Selection Scheme in Neural XCSF. In: Bacardit, J., Browne, W., Drugowitsch, J., Bernadó-Mansilla, E., Butz, M.V. (eds) Learning Classifier Systems. IWLCS IWLCS 2009 2008. Lecture Notes in Computer Science(), vol 6471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17508-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17508-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17507-7

  • Online ISBN: 978-3-642-17508-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics