Skip to main content

Epidemiology Research and Epigenetics: Translational Epidemiology of Schizophrenia

  • Chapter
  • First Online:
Brain, Behavior and Epigenetics

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1625 Accesses

Abstract

Epigenetic processes can explain some of the epidemiological associations between environmental exposure and disease, particularly when the exposure occurs at a critical developmental stage. In this chapter, we present several epigenetic pathways associated with the risk for schizophrenia. We discuss nongenetic factors – such as paternal age, toxin exposure, and psychological stressors – which may influence human development by way of epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborg G Jr (1990) Pregnancy outcome among women working in laundries and dry-cleaning shops using tetrachloroethylene. Am J Ind Med 17(5):567–575

    PubMed  Google Scholar 

  • Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58(23):5489–5494

    PubMed  CAS  Google Scholar 

  • Allen ND, Logan K, Lally G, Drage DJ, Norris ML, Keverne EB (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci USA 92(23):10782–10786

    PubMed  CAS  Google Scholar 

  • Altmann L, Bottger A, Wiegand H (1990) Neurophysiological and psychophysical measurements reveal effects of acute low-level organic solvent exposure in humans. Int Arch Occup Environ Health 62(7):493–499

    PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469

    PubMed  CAS  Google Scholar 

  • Apostoli P, Kiss P, Porru S, Bonde JP, Vanhoorne M (1998) Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup Environ Med 55(6):364–374

    PubMed  CAS  Google Scholar 

  • Bergman K, Sarkar P, Glover V, O’Connor TG (2010) Maternal prenatal cortisol and infant cognitive development: moderation by infant-mother attachment. Biol Psychiatry 67:1026–1032

    PubMed  CAS  Google Scholar 

  • Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35(4):471–478

    PubMed  CAS  Google Scholar 

  • Brady K, Herrera Y, Zenick H (1975) Influence of parental lead exposure on subsequent learning ability of offspring. Pharmacol Biochem Behav 3(4):561–565

    PubMed  CAS  Google Scholar 

  • Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32(2):200–202

    PubMed  Google Scholar 

  • Brown AS, Schaefer CA, Wyatt RJ, Begg MD, Goetz R, Bresnahan MA, Harkavy-Friedman J, Gorman JM, Malaspina D, Susser ES (2002) Paternal age and risk of schizophrenia in adult offspring. Am J Psychiatry 159(9):1528–1533

    PubMed  Google Scholar 

  • Buller RE, Sood AK, Lallas T, Buekers T, Skilling JS (1999) Association between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. J Natl Cancer Inst 91(4):339–346

    PubMed  CAS  Google Scholar 

  • Buss C, Entringer S, Reyes JF, Chicz-DeMet A, Sandman CA, Waffarn F, Wadhwa PD (2009) The maternal cortisol awakening response in human pregnancy is associated with the length of gestation. Am J Obstet Gynecol 201(4):398, e391–398

    PubMed  Google Scholar 

  • Byrne M, Agerbo E, Ewald H, Eaton WW, Mortensen PB (2003) Parental age and risk of schizophrenia: a case-control study. Arch Gen Psychiatry 60(7):673–678

    PubMed  Google Scholar 

  • Byrne M, Agerbo E, Bennedsen B, Eaton WW, Mortensen PB (2007) Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res 97(1–3):51–59

    PubMed  Google Scholar 

  • Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159(7):1080–1092

    PubMed  Google Scholar 

  • Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26(10):3728–3737

    PubMed  CAS  Google Scholar 

  • Chu CE, Donaldson MD, Kelnar CJ, Smail PJ, Greene SA, Paterson WF, Connor JM (1994) Possible role of imprinting in the Turner phenotype. J Med Genet 31(11):840–842

    PubMed  CAS  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393S–2400S

    PubMed  CAS  Google Scholar 

  • Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    PubMed  Google Scholar 

  • Crow JF (1999) Spontaneous mutation in man. Mutat Res 437(1):5–9

    PubMed  CAS  Google Scholar 

  • Cruz-Correa M, Cui H, Giardiello FM, Powe NR, Hylind L, Robinson A, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Feinberg AP (2004) Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology 126(4):964–970

    PubMed  CAS  Google Scholar 

  • Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62(22):6442–6446

    PubMed  CAS  Google Scholar 

  • Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–1755

    PubMed  CAS  Google Scholar 

  • Dalman C, Allebeck P (2002) Paternal age and schizophrenia: further support for an association. Am J Psychiatry 159(9):1591–1592

    PubMed  Google Scholar 

  • Davies W, Isles AR, Wilkinson LS (2001) Imprinted genes and mental dysfunction. Ann Med 33(6):428–436

    PubMed  CAS  Google Scholar 

  • Davies W, Isles AR, Wilkinson LS (2005) Imprinted gene expression in the brain. Neurosci Biobehav Rev 29(3):421–430

    PubMed  CAS  Google Scholar 

  • Doyle P, Roman E, Beral V, Brookes M (1997) Spontaneous abortion in dry cleaning workers potentially exposed to perchloroethylene. Occup Environ Med 54(12):848–853

    PubMed  CAS  Google Scholar 

  • Ellman LM, Schetter CD, Hobel CJ, Chicz-Demet A, Glynn LM, Sandman CA (2008) Timing of fetal exposure to stress hormones: effects on newborn physical and neuromuscular maturation. Dev Psychobiol 50(3):232–241

    PubMed  CAS  Google Scholar 

  • El-Saadi O, Pedersen CB, McNeil TF, Saha S, Welham J, O’Callaghan E, Cantor-Graae E, Chant D, Mortensen PB, McGrath J (2004) Paternal and maternal age as risk factors for psychosis: findings from Denmark, Sweden and Australia. Schizophr Res 67(2–3):227–236

    PubMed  Google Scholar 

  • Eskenazi B, Fenster L, Hudes M, Wyrobek AJ, Katz DF, Gerson J, Rempel DM (1991a) A study of the effect of perchloroethylene exposure on the reproductive outcomes of wives of dry-cleaning workers. Am J Ind Med 20(5):593–600

    PubMed  CAS  Google Scholar 

  • Eskenazi B, Wyrobek AJ, Fenster L, Katz DF, Sadler M, Lee J, Hudes M, Rempel DM (1991b) A study of the effect of perchloroethylene exposure on semen quality in dry cleaning workers. Am J Ind Med 20(5):575–591

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    PubMed  CAS  Google Scholar 

  • Fleming A, Copp AJ (1998) Embryonic folate metabolism and mouse neural tube defects. Science 280(5372):2107–2109

    PubMed  CAS  Google Scholar 

  • Foster WG, McMahon A, Rice DC (1996) Sperm chromatin structure is altered in cynomolgus monkeys with environmentally relevant blood lead levels. Toxicol Ind Health 12(5):723–735

    PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609

    PubMed  CAS  Google Scholar 

  • Fredrickson P, Richelson E (1979) Mayo seminars in psychiatry: dopamine and schizophrenia–a review. J Clin Psychiatry 40(9):399–405

    PubMed  CAS  Google Scholar 

  • Fujioka A, Fujioka T, Ishida Y, Maekawa T, Nakamura S (2006) Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience 141(2):907–915

    PubMed  CAS  Google Scholar 

  • Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105(1):4–13

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA, Beedle AS, Raubenheimer D (2008) Fetal and neonatal pathways to obesity. Front Horm Res 36:61–72

    PubMed  Google Scholar 

  • Goldstein JM, Faraone SV, Chen WJ, Tolomiczencko GS, Tsuang MT (1990) Sex differences in the familial transmission of schizophrenia. Br J Psychiatry 156:819–826

    PubMed  CAS  Google Scholar 

  • Gottesman II, Shields J (1982) Schizophrenia: the epigenetic puzzle. Cambridge University Press, New York, NY

    Google Scholar 

  • Harlap S, Perrin MC, Deutsch L, Kleinhaus K, Fennig S, Nahon D, Teitelbaum A, Friedlander Y, Malaspina D (2009) Schizophrenia and birthplace of paternal and maternal grandfather in the Jerusalem perinatal cohort prospective study. Schizophr Res 111(1–3):23–31

    PubMed  CAS  Google Scholar 

  • Hedera P, Gorski JL (2003) Oculo-facio-cardio-dental syndrome: skewed X chromosome inactivation in mother and daughter suggest X-linked dominant Inheritance. Am J Med Genet A 123A(3):261–266

    PubMed  Google Scholar 

  • Hernandez-Ochoa I, Sanchez-Gutierrez M, Solis-Heredia MJ, Quintanilla-Vega B (2006) Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation. Reprod Toxicol 21(2):171–178

    PubMed  CAS  Google Scholar 

  • Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP (1999) Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol 180(1 Pt 3):S257–263

    PubMed  CAS  Google Scholar 

  • Horsthemke B, Buiting K (2006) Imprinting defects on human chromosome 15. Cytogenet Genome Res 113(1–4):292–299

    PubMed  CAS  Google Scholar 

  • Isles AR, Wilkinson LS (2000) Imprinted genes, cognition and behaviour. Trends Cogn Sci 4(8):309–318

    PubMed  Google Scholar 

  • Iwasa Y (1998) The conflict theory of genomic imprinting: how much can be explained? Curr Top Dev Biol 40:255–293

    PubMed  CAS  Google Scholar 

  • Kato Y, Rideout WM 3rd, Hilton K, Barton SC, Tsunoda Y, Surani MA (1999) Developmental potential of mouse primordial germ cells. Development 126(9):1823–1832

    PubMed  CAS  Google Scholar 

  • Kendler KS (1986) A twin study of mortality in schizophrenia and neurosis. Arch Gen Psychiatry 43(7):643–649

    PubMed  CAS  Google Scholar 

  • Kesler SR, Blasey CM, Brown WE, Yankowitz J, Zeng SM, Bender BG, Reiss AL (2003) Effects of X-monosomy and X-linked imprinting on superior temporal gyrus morphology in Turner syndrome. Biol Psychiatry 54(6):636–646

    PubMed  CAS  Google Scholar 

  • Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 92(1):91–100

    PubMed  CAS  Google Scholar 

  • Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB (2008) Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 65(2):146–152

    PubMed  Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK, MacDonald RG, Jirtle RL (2000) M6P/IGF2R imprinting evolution in mammals. Mol Cell 5(4):707–716

    PubMed  CAS  Google Scholar 

  • Kim JW, Park SY, Kim YM, Kim JM, Han JY, Ryu HM (2004) X-chromosome inactivation patterns in Korean women with idiopathic recurrent spontaneous abortion. J Korean Med Sci 19(2):258–262

    PubMed  Google Scholar 

  • King S, Laplante DP (2005) The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress 8(1):35–45

    PubMed  Google Scholar 

  • King BR, Smith R, Nicholson RC (2001) The regulation of human corticotrophin-releasing hormone gene expression in the placenta. Peptides 22(5):795–801

    PubMed  CAS  Google Scholar 

  • Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E (2008) Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord 38(3):481–488

    PubMed  Google Scholar 

  • Kinoshita K, Miura Y, Nagasaki H, Murase T, Bando Y, Oiso Y (2004) A novel deletion mutation in the arginine vasopressin receptor 2 gene and skewed X chromosome inactivation in a female patient with congenital nephrogenic diabetes insipidus. J Endocrinol Invest 27(2):167–170

    PubMed  CAS  Google Scholar 

  • Kleinhaus K, Steinfeld S, Balaban J, Goodman L, Craft TS, Malaspina D, Myers MM, Moore H (2010) Effects of excessive glucocorticoid receptor stimulation during early gestation on psychomotor and social behavior in the rat. Dev Psychobiol 52(2):121–132

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Fujihara Y, Mise N, Kaseda K, Abe K, Ishino F, Okabe M (2010) The X-linked imprinted gene family Fthl17 shows predominantly female expression following the two-cell stage in mouse embryos. Nucleic Acids Res 38:3672–3681

    PubMed  CAS  Google Scholar 

  • Koenig JI, Kirkpatrick B, Lee P (2002) Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 27(2):309–318

    PubMed  CAS  Google Scholar 

  • Kristiansen M, Knudsen GP, Tanner SM, McEntagart M, Jungbluth H, Muntoni F, Sewry C, Gallati S, Orstavik KH, Wallgren-Pettersson C (2003) X-inactivation patterns in carriers of X-linked myotubular myopathy. Neuromuscul Disord 13(6):468–471

    PubMed  CAS  Google Scholar 

  • Kyyronen P, Taskinen H, Lindbohm ML, Hemminki K, Heinonen OP (1989) Spontaneous abortions and congenital malformations among women exposed to tetrachloroethylene in dry cleaning. J Epidemiol Community Health 43(4):346–351

    PubMed  CAS  Google Scholar 

  • Lanasa MC, Hogge WA, Kubik C, Blancato J, Hoffman EP (1999) Highly skewed X-chromosome inactivation is associated with idiopathic recurrent spontaneous abortion. Am J Hum Genet 65(1):252–254

    PubMed  CAS  Google Scholar 

  • Laplante DP, Barr RG, Brunet A, Galbaud du Fort G, Meaney ML, Saucier JF, Zelazo PR, King S (2004) Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatr Res 56(3):400–410

    PubMed  Google Scholar 

  • Laplante DP, Brunet A, Schmitz N, Ciampi A, King S (2008) Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J Am Acad Child Adolesc Psychiatry 47(9):1063–1072

    PubMed  Google Scholar 

  • Lemaire V, Lamarque S, Le Moal M, Piazza PV, Abrous DN (2006) Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol Psychiatry 59(9):786–792

    PubMed  Google Scholar 

  • Lewis A, Murrell A (2004) Genomic imprinting: CTCF protects the boundaries. Curr Biol 14(7):R284–286

    PubMed  CAS  Google Scholar 

  • Lichtenberg P, Kaplan Z, Grinshpoon A, Feldman D, Nahon D (1999) The goals and limitations of Israel’s psychiatric case register. Psychiatr Serv 50(8):1043–1048

    PubMed  CAS  Google Scholar 

  • Luxenburger H (1928) Vorlaufiger Bericht über psychiatrische Serienuntersuchungen und Zwillingen. Zeiischrift gesamte Neurol Psychiatr 116:297–326

    Google Scholar 

  • Malaspina D (2001) Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr Bull 27(3):379–393

    PubMed  CAS  Google Scholar 

  • Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, Susser ES (2001) Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 58(4):361–367

    PubMed  CAS  Google Scholar 

  • Malaspina D, Corcoran C, Kleinhaus KR, Perrin MC, Fennig S, Nahon D, Friedlander Y, Harlap S (2008) Acute maternal stress in pregnancy and schizophrenia in offspring: a cohort prospective study. BMC Psychiatry 8:71

    PubMed  CAS  Google Scholar 

  • Mangelsdorf I, Buschmann J, Orthen B (2003) Some aspects relating to the evaluation of the effects of chemicals on male fertility. Regul Toxicol Pharmacol 37(3):356–369

    PubMed  CAS  Google Scholar 

  • Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann NY Acad Sci 997:136–149

    PubMed  CAS  Google Scholar 

  • McGrath JJ, Richards LJ (2009) Why schizophrenia epidemiology needs neurobiology – and vice versa. Schizophr Bull 35(3):577–581

    PubMed  Google Scholar 

  • Meguro M, Mitsuya K, Sui H, Shigenami K, Kugoh H, Nakao M, Oshimura M (1997) Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet 6(12):2127–2133

    PubMed  CAS  Google Scholar 

  • Mirabello L, Savage SA, Korde L, Gadalla SM, Greene MH (2010) LINE-1 methylation is inherited in familial testicular cancer kindreds. BMC Med Genet 11:77

    PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318

    PubMed  CAS  Google Scholar 

  • Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes IGF2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893

    PubMed  CAS  Google Scholar 

  • Nelson BK, Taylor BJ, Setzer JV, Hornung RW (1979) Behavioral teratology of perchloroethylene in rats. J Environ Pathol Toxicol 3(1–2):233–250

    PubMed  CAS  Google Scholar 

  • Nelson BK, Moorman WJ, Schrader SM, Shaw PB, Krieg EF Jr (1997) Paternal exposure of rabbits to lead: behavioral deficits in offspring. Neurotoxicol Teratol 19(3):191–198

    PubMed  CAS  Google Scholar 

  • Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR (2008) Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry 13(9):873–877

    PubMed  CAS  Google Scholar 

  • O’Neil J, Steele G, McNair CS, Matusiak MM, Madlem J (2006) Blood lead levels in NASCAR Nextel Cup teams. J Occup Environ Hyg 3(2):67–71

    PubMed  Google Scholar 

  • Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B (2003) Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA 100(4):1775–1780

    PubMed  CAS  Google Scholar 

  • Opler MG, Brown AS, Graziano J, Desai M, Zheng W, Schaefer C, Factor-Litvak P, Susser ES (2004) Prenatal lead exposure, delta-aminolevulinic acid, and schizophrenia. Environ Health Perspect 112(5):548–552

    PubMed  CAS  Google Scholar 

  • Opler MG, Buka SL, Groeger J, McKeague I, Wei C, Factor-Litvak P, Bresnahan M, Graziano J, Goldstein JM, Seidman LJ, Brown AS, Susser ES (2008) Prenatal exposure to lead, delta-aminolevulinic acid, and schizophrenia: further evidence. Environ Health Perspect 116(11):1586–1590

    PubMed  CAS  Google Scholar 

  • Opler MG, Harlap S, Ornstein K, Kleinhaus K, Perrin M, Gangwisch JE, Lichtenberg P, Draiman B, Malaspina D (2010) Time-to-pregnancy and risk of schizophrenia. Schizophr Res 118:76–80

    PubMed  Google Scholar 

  • Parolini O, Ressmann G, Haas OA, Pawlowsky J, Gadner H, Knapp W, Holter W (1998) X-linked Wiskott-Aldrich syndrome in a girl. N Engl J Med 338(5):291–295

    PubMed  CAS  Google Scholar 

  • Pegoraro E, Whitaker J, Mowery-Rushton P, Surti U, Lanasa M, Hoffman EP (1997) Familial skewed X inactivation: a molecular trait associated with high spontaneous-abortion rate maps to Xq28. Am J Hum Genet 61(1):160–170

    PubMed  CAS  Google Scholar 

  • Perkins DO (2004) Evaluating and treating the prodromal stage of schizophrenia. Curr Psychiatry Rep 6(4):289–295

    PubMed  Google Scholar 

  • Perrin MC, Opler MG, Harlap S, Harkavy-Friedman J, Kleinhaus K, Nahon D, Fennig S, Susser ES, Malaspina D (2007) Tetrachloroethylene exposure and risk of schizophrenia: offspring of dry cleaners in a population birth cohort, preliminary findings. Schizophr Res 90(1–3):251–254

    PubMed  Google Scholar 

  • Perrin M, Harlap S, Kleinhaus K, Lichtenberg P, Manor O, Draiman B, Fennig S, Malaspina D (2010) Older paternal age strongly increases the morbidity for schizophrenia in sisters of affected females. Am J Med Genet B Neuropsychiatr Genet 153B:1329–1335

    PubMed  Google Scholar 

  • Petronis A, Gottesman II, Crow TJ, DeLisi LE, Klar AJ, Macciardi F, McInnis MG, McMahon FJ, Paterson AD, Skuse D, Sutherland GR (2000) Psychiatric epigenetics: a new focus for the new century. Mol Psychiatry 5(4):342–346

    PubMed  CAS  Google Scholar 

  • Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178

    PubMed  Google Scholar 

  • Pidsley R, Dempster EL, Mill J (2010) Brain weight in males is correlated with DNA methylation at IGF2. Mol Psychiatry 15:880–881

    PubMed  CAS  Google Scholar 

  • Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86(4):1179–1186

    PubMed  CAS  Google Scholar 

  • Pulver AE, McGrath JA, Liang KY, Lasseter VK, Nestadt G, Wolyniec PS (2004) An indirect test of the new mutation hypothesis associating advanced paternal age with the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 124B(1):6–9

    PubMed  Google Scholar 

  • Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752

    PubMed  CAS  Google Scholar 

  • Reis FM, Fadalti M, Florio P, Petraglia F (1999) Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. J Soc Gynecol Investig 6(3):109–119

    PubMed  CAS  Google Scholar 

  • Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW (2008) Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet 147B(4):459–462

    PubMed  Google Scholar 

  • Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009a) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65(9):760–769

    PubMed  CAS  Google Scholar 

  • Roth TL, Lubin FD, Sodhi M, Kleinman JE (2009b) Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta 1790(9):869–877

    PubMed  CAS  Google Scholar 

  • Rutten BP, Mill J (2009) Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull 35(6):1045–1056

    PubMed  Google Scholar 

  • Schaefer CB, Ooi SK, Bestor TH, Bourc’his D (2007) Epigenetic decisions in mammalian germ cells. Science 316(5823):398–399

    PubMed  CAS  Google Scholar 

  • Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151(Suppl 3):U49–62

    PubMed  CAS  Google Scholar 

  • Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3(6):479–488

    PubMed  CAS  Google Scholar 

  • Sharpe RM (2010) Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365(1546):1697–1712

    PubMed  CAS  Google Scholar 

  • Shiao YH, Crawford EB, Anderson LM, Patel P, Ko K (2005) Allele-specific germ cell epimutation in the spacer promoter of the 45S ribosomal RNA gene after Cr(III) exposure. Toxicol Appl Pharmacol 205(3):290–296

    PubMed  CAS  Google Scholar 

  • Silbergeld EK, Quintanilla-Vega B, Gandley RE (2003) Mechanisms of male mediated developmental toxicity induced by lead. Adv Exp Med Biol 518:37–48

    PubMed  CAS  Google Scholar 

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80(6):1420–1430

    PubMed  Google Scholar 

  • Sipos A, Rasmussen F, Harrison G, Tynelius P, Lewis G, Leon DA, Gunnell D (2004) Paternal age and schizophrenia: a population based cohort study. BMJ 329(7474):1070

    PubMed  Google Scholar 

  • Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, Bacarese-Hamilton M, Creswell C, McGurk R, Jacobs PA (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387(6634):705–708

    PubMed  CAS  Google Scholar 

  • Smith R, Nicholson RC (2007) Corticotrophin releasing hormone and the timing of birth. Front Biosci 12:912–918

    PubMed  CAS  Google Scholar 

  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294(5):557–562

    PubMed  CAS  Google Scholar 

  • Stevens KE, Adams CE, Yonchek J, Hickel C, Danielson J, Kisley MA (2008) Permanent improvement in deficient sensory inhibition in DBA/2 mice with increased perinatal choline. Psychopharmacology (Berl) 198(3):413–420

    CAS  Google Scholar 

  • Stowe HD, Goyer RA (1971) Reproductive ability and progeny of F1 lead-toxic rats. Fertil Steril 22(11):755–760

    PubMed  CAS  Google Scholar 

  • Struewing JP, Pineda MA, Sherman ME, Lissowska J, Brinton LA, Peplonska B, Bardin-Mikolajczak A, Garcia-Closas M (2006) Skewed X chromosome inactivation and early-onset breast cancer. J Med Genet 43(1):48–53

    PubMed  CAS  Google Scholar 

  • Surani MA, Allen ND, Barton SC, Fundele R, Howlett SK, Norris ML, Reik W (1990) Developmental consequences of imprinting of parental chromosomes by DNA methylation. Philos Trans R Soc Lond B Biol Sci 326(1235):313–327

    PubMed  CAS  Google Scholar 

  • Susser ES, Lin SP (1992) Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 49(12):983–988

    PubMed  CAS  Google Scholar 

  • Tsuchiya KJ, Takagai S, Kawai M, Matsumoto H, Nakamura K, Minabe Y, Mori N, Takei N (2005) Advanced paternal age associated with an elevated risk for schizophrenia in offspring in a Japanese population. Schizophr Res 76(2–3):337–342

    PubMed  Google Scholar 

  • Valleix S, Vinciguerra C, Lavergne JM, Leuer M, Delpech M, Negrier C (2002) Skewed X-chromosome inactivation in monochorionic diamniotic twin sisters results in severe and mild hemophilia A. Blood 100(8):3034–3036

    PubMed  CAS  Google Scholar 

  • Van den Hove DL, Lauder JM, Scheepens A, Prickaerts J, Blanco CE, Steinbusch HW (2006) Prenatal stress in the rat alters 5-HT1A receptor binding in the ventral hippocampus. Brain Res 1090(1):29–34

    PubMed  Google Scholar 

  • van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645

    PubMed  Google Scholar 

  • Wadhwa PD (2005) Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology 30(8):724–743

    PubMed  CAS  Google Scholar 

  • Wadhwa PD, Porto M, Garite TJ, Chicz-DeMet A, Sandman CA (1998) Maternal corticotropin-releasing hormone levels in the early third trimester predict length of gestation in human pregnancy. Am J Obstet Gynecol 179(4):1079–1085

    PubMed  CAS  Google Scholar 

  • Wadhwa PD, Garite TJ, Porto M, Glynn L, Chicz-DeMet A, Dunkel-Schetter C, Sandman CA (2004) Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol 191(4):1063–1069

    PubMed  CAS  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320(5875):539–543

    PubMed  CAS  Google Scholar 

  • Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9(4):358–370

    PubMed  CAS  Google Scholar 

  • Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20(9–10):532–543

    PubMed  Google Scholar 

  • Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8(6):592–610

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149(7):890–897

    PubMed  CAS  Google Scholar 

  • Weinstock M (2005) The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 19(4):296–308

    PubMed  CAS  Google Scholar 

  • Weiser M, Kanyas K, Malaspina D, Harvey PD, Glick I, Goetz D, Karni O, Yakir A, Turetsky N, Fennig S, Nahon D, Lerer B, Davidson M (2005) Sensitivity of ICD-10 diagnosis of psychotic disorders in the Israeli National Hospitalization Registry compared with RDC diagnoses based on SADS-L. Compr Psychiatry 46(1):38–42

    PubMed  Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2000) Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci 12(3):1047–1054

    PubMed  CAS  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220(4601):1055–1057

    PubMed  CAS  Google Scholar 

  • Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262(21):9948–9951

    PubMed  CAS  Google Scholar 

  • Windham GC, Shusterman D, Swan SH, Fenster L, Eskenazi B (1991) Exposure to organic solvents and adverse pregnancy outcome. Am J Ind Med 20(2):241–259

    PubMed  CAS  Google Scholar 

  • Wolyniec PS, Pulver AE, McGrath JA, Tam D (1992) Schizophrenia: gender and familial risk. J Psychiatr Res 26(1):17–27

    PubMed  CAS  Google Scholar 

  • Zagron G, Weinstock M (2006) Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav Brain Res 175(2):323–328

    PubMed  CAS  Google Scholar 

  • Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingson T, Owen MJ, Lewis G (2003) Paternal age and risk for schizophrenia. Br J Psychiatry 183:405–408

    PubMed  Google Scholar 

  • Zamudio NM, Chong S, O’Bryan MK (2008) Epigenetic regulation in male germ cells. Reproduction 136(2):131–146

    PubMed  CAS  Google Scholar 

  • Zhong Z, Zhang C, Rizak JD, Cui Y, Xu S, Che Y (2010) Chronic prenatal lead exposure impairs long-term memory in day old chicks. Neurosci Lett 476(1):23–26

    PubMed  CAS  Google Scholar 

  • Zubkova EV, Wade M, Robaire B (2005) Changes in spermatozoal chromatin packaging and susceptibility to oxidative challenge during aging. Fertil Steril 84(Suppl 2):1191–1198

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Susan Harlap and Benjamin Barasch for reviewing this manuscript and providing many insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perrin, M., Kleinhaus, K., Opler, M., Messinger, J., Malaspina, D. (2011). Epidemiology Research and Epigenetics: Translational Epidemiology of Schizophrenia. In: Petronis, A., Mill, J. (eds) Brain, Behavior and Epigenetics. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17426-1_5

Download citation

Publish with us

Policies and ethics