Skip to main content

Using Homogenization by Asymptotic Expansion for Micro – Macro Behavior Modeling of Traumatic Brain Injury

  • Conference paper
Integrated Systems, Design and Technology 2010
  • 1453 Accesses

Abstract

Bridging veins are frequently damaged in traumatic brain injury. These veins are prone to rupture in their subdural portion upon head impact, due to brain-skull relative motion, giving rise to an acute subdural hematoma. To understand the biomechanical characteristics of this hematoma, we take into account the periodical distribution of bridging veins in the sagittal plane. This allowed the use of the method of homogenization by asymptotic expansion to calculate the homogenized elastic properties of the brain-skull interface region. The geometry of this zone was simplified and a representative volume element was developed comprising: sinus, bridging vein, blood circulating inside them, surrounding cerebrospinal fluid and tissues. The heterogeneous elementary cell is transformed to an anisotropic homogenous equivalent medium and the homogenized elastic properties were calculated. The macroscopic homogenized properties resulted from the current study can be incorporated into a finite element model of the human head at macroscopic scale. The main results of this homogenization theory are the calculation of the local stress field into the elementary cell, as well as its homogeneous anisotropic properties at the macroscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maxeiner, H.: Detection of ruptured cerebral bridging veins at autopsy. Forensic Science International 89, 103–110 (1997)

    Article  Google Scholar 

  2. Maxeiner, H., Wolff, M.: Pure subdural hematomas: a postmortem analysis of their form and bleeding points. Neurosurgery 50, 503–509 (2002)

    Article  Google Scholar 

  3. Ly, J.Q., Sanders, T.G., Smirniotopoulos, J.G., Folio, L.: Subdural Hematoma. Military Medicine 171, 1–5 (2006)

    Google Scholar 

  4. Arslan, O.: Neuroanatomical basis of clinical neurology. Parthenon Publishing (2001)

    Google Scholar 

  5. Fenderson, B.A., Rubin, R., Rubin, E.: Linppincott’s review of pathology illustrated interactive Q and A. Lippincott Williams and Wilkins (2006)

    Google Scholar 

  6. Yamashima, T., Friede, R.L.: Why do bridging veins rupture in the virtual subdural space? Journal of Neurology, Neurosurgery, and Psychiatry 47, 121–127 (1984)

    Article  Google Scholar 

  7. Vignes, J.R., Dagain, A., Liguoro, D., Guérin, J.: A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Journal of Neurosurgery 107, 1205–1210 (2007)

    Article  Google Scholar 

  8. Willinger, R., Taleb, L., Kopp, C.M.: Modal and temporal analysis of head mathematical models. Journal of Neurotrauma 12(4), 743–754 (1995)

    Article  Google Scholar 

  9. Bayly, P.V., Cohen, T.S., Leister, E.P., Ajo, D., Leuthardt, E.C., Genin, G.M.: Deformation of the human brain induced by mild acceleration. Journal of Neurotrauma 22(8), 845–856 (2005)

    Article  Google Scholar 

  10. Sabet, A.A., Christoforou, E., Zatlin, B., Genin, G.M., Bayly, P.V.: Deformation of the human brain induced by mild angular head acceleration. Journal of Biomechanics 41, 307–315 (2008)

    Article  Google Scholar 

  11. Hardy, W.N., Mason, M.J., Foster, C.D., Shah, C.S., Kopacz, J.M., Yang, K.H., King, A.I., Bishop, J., Bey, M., Anders, W., Tashman, S.: A study of the response of the human cadaver head to impact. Stapp Car Crash journal 51, 17–80 (2007)

    Google Scholar 

  12. Kleiven, S., Hardy, W.N.: Correlation of a finite element model of human head with local brain motion – consequences for injury prediction. Stapp Car Crash Journal 46, 123–144 (2002)

    Google Scholar 

  13. Lee, M.C., Haut, R.C.: Insensitivity of tensile failure properties of human bridging veins to strain rate: Implication in biomechanics of subdural hematoma. Journal of Biomechanics 22(6), 537–542 (1989)

    Article  Google Scholar 

  14. Henrikson, R.C., Kaye, G.I., Mazurkiewicz, J.E.: Histology, National Medical Series for independent Study. Lippincott Williams and Wilkins (1997)

    Google Scholar 

  15. Bashkatov, A.N., Genina, E.A., Sinichkin, Y.P., Kochubey, V.I., Lakodina, N.A., Tuchin, V.V.: Glucose and mannitol diffusion in human dura mater. Biophysical Journal 85, 3310–3318 (2003)

    Article  Google Scholar 

  16. Melvin, J.W., McElhaney, J.H., Roberts, V.L.: Development of a mechanical model of the human Head – Determination of tissue properties and synthetic substitute materials. SAE Paper, 700–903 (1970)

    Google Scholar 

  17. Ruan, J.S., Khalil, T.B., King, A.I.: Finite element modeling of direct head impact. SAE, 933–1114 (1993)

    Google Scholar 

  18. Huang, Y., Lee, M.C., Chiu, W.T., Chen, C.T., Lee, S.Y.: Three-dimensional finite element analysis of subdural hematoma. Journal of Trauma 47, 538–544 (1999)

    Article  Google Scholar 

  19. Monson, K.L., Goldsmith, W., Barbaro, N.M., Manley, G.T.: Significant of source and size in the mechanical response of human cerebral blood vessels. Journal of Biomechanics 38, 737–744 (2005)

    Article  Google Scholar 

  20. Rhoton, A.L.: The cerebral veins. Neurosurgery 51, 159–205 (2002)

    Google Scholar 

  21. Sanchez-Palencia, E.: Comportement local et macroscopique d’un type de milieux physiques hétérogènes. International Journal of Engineering Science 12, 331–351 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ladeveze, P., Proslier, L., Remond, Y.: Reconstruction of a 3-D composite behaviour from a local approach. In: Conference paper. Metallurgical Society Inc., Warrendale (1985)

    Google Scholar 

  23. Dumont, J.P., Ladeveze, P., Poss, M., Remond, Y.: Damage mechanics for 3-D composites. Composites Structures 8(2), 119–141 (1987)

    Article  Google Scholar 

  24. Devries, F., Dumontet, H., Duvaut, G., Lene, F.: Homogenization and damage for composite structures. International Journal for Numerical Methods in Engineering 7(2), 285–298 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Remond, Y., Rahman, R.A., Baumgartner, D., Ahzi, S. (2011). Using Homogenization by Asymptotic Expansion for Micro – Macro Behavior Modeling of Traumatic Brain Injury. In: Fathi, M., Holland, A., Ansari, F., Weber, C. (eds) Integrated Systems, Design and Technology 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17384-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17384-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17383-7

  • Online ISBN: 978-3-642-17384-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics