Skip to main content

Funktionelle kortikale Korrelate der Handfunktion

  • Chapter
Handfunktionsstörungen in der Neurologie
  • 2913 Accesses

Zusammenfassung

Das motorische System besteht aus einem komplexen Netzwerk kortikaler und subkortikaler Areale, in dem neuronale Populationen durch erregende und hemmende Mechanismen miteinander in Interaktion stehen. Dieses hoch dynamische System wird durch externe und interne Faktoren moduliert, die schließlich die sensorische Wahrnehmung, die Aufmerksamkeit und das motorische Verhalten kontrollieren. Während die Beobachtung solcher Prozesse im Tierexperiment meist mit invasiven Methoden erfolgt (z. B. direkte Ableitung lokaler Feldpotenziale über intrakortikale Elektroden), sind die Möglichkeiten beim Menschen für invasive Messungen neuronaler Aktivität sehr beschränkt. Hier bieten nicht-invasive Bildgebungsverfahren wie

  • die Positronen-Emissions-Tomographie (PET) oder

  • die funktionelle Magnetresonanztomographie (fMRT)

eine wichtige Brücke zur Erforschung struktureller und funktioneller Plastizitätsvorgänge am lebenden menschlichen Gehirn. Eine strukturelle Läsion aufgrund eines Schlaganfalls kann die komplexe Balance erregender und hemmender Einflüsse im motorischen Netzwerk kritisch stören. Eine ischämische Läsion wirkt sich nicht nur direkt auf die absteigenden motorischen Nervenbahnen (d.h. den Tractus corticospinalis) aus, sondern auch auf die funktionelle Netzwerkstruktur entfernter kortikaler Areale beider Hemisphären. Bildgebungsstudien mit fMRT und PET haben übereinstimmend gezeigt, dass Bewegungen der vom Schlaganfall betroffenen Hand verbunden sind mit gesteigerter neuraler Aktivität in der kontraläsionellen, d.h. »gesunden « Hemisphäre, was in alterspassenden Kontrollgruppen nicht zu beobachten ist. Jedoch kann die funktionelle Signifikanz der aktivierten Areale in der nicht betroffenen Hemisphäre zur Bewegung der paretischen Hand – d.h. unterstützend, unspezifisch oder sogar störend – nicht aus klassischen bildgebenden Experimenten gefolgert werden. Das Wissen, wo funktionelle Zustände unterschiedliche Niveaus neuraler Aktivität verursachen, sagt uns nicht, wie eine bestimmte Region mit anderen Regionen in Interaktion steht, die allesamt das Verhalten modulieren. Solche Fragestellungen können besser mit Modellen der funktionellen oder effektiven Konnektivität beantwortet werden, die in den letzten Jahren auch zur Interpretation neuronaler Veränderung bei Schlaganfallpatienten eingesetzt worden sind. Eine solche Systemperspektive auf Hirnnetzwerke ermöglicht neue Einblicke in die Pathophysiologie von Defiziten nach einem Schlaganfall und auf die Einflüsse von therapeutischen Maßnahmen zur Interferenz mit pathologischen Hirnnetzwerken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

13.1 Literatur

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17

    PubMed  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12: 512–523

    PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28: 22–29

    PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo–planar MRI. Mag.Res.Med. 34: 537–541

    CAS  Google Scholar 

  • Breakspear M, Terry JR, Friston KJ (2003) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14: 703–732

    PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Carter AR, Astafiev SV, Lang CE et al. (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67: 365–375

    PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29: 63–71

    PubMed  CAS  Google Scholar 

  • Chouinard PA, Leonard G, Paus T (2006) Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Exp Neurol 201: 375–387

    PubMed  Google Scholar 

  • Chouinard PA, van der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90: 1071–1083

    PubMed  Google Scholar 

  • Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63: 272–287

    PubMed  Google Scholar 

  • David O, Guillemain I, Saillet S et al. (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6: 2683–2697

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol.Behav 77: 677–682

    PubMed  CAS  Google Scholar 

  • Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG (2005) Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28: 940–946

    PubMed  Google Scholar 

  • Feeney DM, Baron JC (1986) Diaschisis. Stroke 17: 817–830

    PubMed  CAS  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453: 525–546

    PubMed  CAS  Google Scholar 

  • Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77: 2164–2174

    PubMed  CAS  Google Scholar 

  • Foerster O (1936) The motor cortex in man in the light of hughling jackson’s doctrines. Brain 59: 135–159

    Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711

    PubMed  CAS  Google Scholar 

  • Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda R, Cohen LG (2004) Reorganization of human premotor cortex after stroke recovery. Brain 127: 747–758

    PubMed  Google Scholar 

  • Friston K (2002a) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci 25: 221–250

    CAS  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2: 56–78

    Google Scholar 

  • Friston KJ (2002b) Statistics I: Experimental design and statistical parametric mapping. In: Toga AW, Mazziotta JC (eds) Human Brain Function. Academic Press, San Diego. pp 605–632

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal–component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13: 5–14

    PubMed  CAS  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19: 1273–1302

    PubMed  CAS  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2005) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129: 791–808

    PubMed  Google Scholar 

  • Gerloff C, Bushara K, Sailer A et al. (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129: 791–808

    PubMed  Google Scholar 

  • Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008a) Dynamic intra– and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRT and DCM. Neuroimage 41: 1382–1394

    Google Scholar 

  • Grefkes C, Fink GR (2009) Functional Neuroimaging and Neuromodulation: Effects of Transcranial Magnetic Stimulation on Cortical Networks in Healthy Subjects and Patients. Klin Neurophysiol 40: 239–247

    Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB et al. (2008b) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236–246

    Google Scholar 

  • Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010a) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRT and dynamic causal modeling. Neuroimage 50: 234–243

    Google Scholar 

  • Grefkes C, Wang LE, Eickhoff SB, Fink GR (2010b) Noradrenergic modulation of cortical networks engaged in visuomotor processing. Cereb Cortex 20: 783–797

    Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406: 147–150

    PubMed  CAS  Google Scholar 

  • Horwitz B, Rumsey JM, Donohue BC (1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 95: 8939–8944

    PubMed  CAS  Google Scholar 

  • Hughlings–Jackson JA (1886) contribution to the comparative study of convulsions. Brain 9: 1–23

    Google Scholar 

  • Hummel F, Celnik P, Giraux P et al. (2005) Effects of non–invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128: 490–499

    PubMed  Google Scholar 

  • Hummel FC, Cohen LG (2006) Non–invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5: 708–712

    PubMed  Google Scholar 

  • Lassen NA, Roland PE, Larsen B, Melamed E, Soh K (1977) Mapping of human cerebral functions: a study of the regional cerebral blood flow pattern during rest, its reproducibility and the activations seen during basic sensory and motor functions. Acta Neurol Scand Suppl 64: 262–265

    PubMed  CAS  Google Scholar 

  • James GA, Lu ZL, VanMeter JW, Sathian K, Hu XP, Butler AJ (2009) Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top Stroke Rehabil 16: 270–281

    PubMed  Google Scholar 

  • Johansen–Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002a) Correlation between motor improvements and altered fMRT activity after rehabilitative therapy. Brain 125: 2731–2742

    Google Scholar 

  • Johansen–Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002b). The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99: 14518–14523

    Google Scholar 

  • Kinsbourne M (1974) Mechanisms of hemispheric interaction in man. In: Kinsbourne M, Smith WL (eds) Hemispheric disconnection and cerebral function. Thomas, Springfield (IL). pp 260–85

    Google Scholar 

  • Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry 72: 473–479

    PubMed  CAS  Google Scholar 

  • Lee L, Siebner HR, Rowe JB et al. (2003) Acute remapping within the motor system induced by low–frequency repetitive transcranial magnetic stimulation. J Neurosci 23: 5308–5318

    PubMed  CAS  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRT. Nature 453: 869–878

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRT signal. Nature 412: 150–157

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRT contrast mechanism. Magn Reson Imaging 22: 1517–1531

    PubMed  Google Scholar 

  • Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26: 6096–6102

    PubMed  CAS  Google Scholar 

  • Mansur CG, Fregni F, Boggio PS et al. (2005) A sham stimulationcontrolled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64: 1802–1804

    PubMed  CAS  Google Scholar 

  • McIntosh AR, Gonzalez–Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2

    Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55: 400–409

    PubMed  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre–supplementary motor areas. Nat Rev Neurosci 9: 856–869

    PubMed  CAS  Google Scholar 

  • Newton JM, Ward NS, Parker GJ et al. (2006) Non–invasive mapping of corticofugal fibres from multiple motor areas – relevance to stroke recovery. Brain 129: 1844–1858

    PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Dafotakis M et al. (2008) Effects of low–frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65: 741–747

    PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Dafotakis M, Kust J, Karbe H, Fink GR (2007) Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J Neurosci 25: 3173–3184

    PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    PubMed  CAS  Google Scholar 

  • Olesen J (1971) Contralateral focal increase of cerebral blood flow in man during arm work. Brain 94: 635–646

    PubMed  CAS  Google Scholar 

  • Pascual–Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience – Virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10: 232–237

    PubMed  Google Scholar 

  • Penfield W, Rasmussen T (1952) The Cerebral Cortex of Man. Macmillan, New York

    Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22: 1157–1172

    PubMed  CAS  Google Scholar 

  • Raichle ME, Grubb RL Jr, Gado MH, Eichling JO, Ter–Pogossian MM (1976) Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol 33: 523–526

    PubMed  CAS  Google Scholar 

  • Rehme AK, Fink GR, Cramon DY, Grefkes C (2010) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRT. Cereb Cortex, in press

    Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: New concepts. Electroenceph Clin Neurophysiol 106: 283–296

    PubMed  CAS  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRT. Neuroimage 25: 230–242

    PubMed  Google Scholar 

  • Roland PE, Larsen B, Lassen NA, Skinhoj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. Journal of Neurophysiology 43: 118–136

    PubMed  CAS  Google Scholar 

  • Schieber M (2000) New views of the primary motor cortex. Neuroscientist 6: 380–389

    CAS  Google Scholar 

  • Sharma N, Baron JC, Rowe JB (2009) Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol 66: 604–616

    PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing »drivers« from »modulators«. Proc Natl Acad Sci USA 95: 7121–7126

    PubMed  CAS  Google Scholar 

  • Stephan KE, Fink GR, Marshall JC (2007a) Mechanisms of hemispheric specialization: insights from analyses of connectivity. Neuropsychologia 45: 209–228

    Google Scholar 

  • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007b) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32: 129–144

    Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130: 170–180

    PubMed  Google Scholar 

  • Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K (2005) Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36: 2681–2686

    PubMed  Google Scholar 

  • Talelli P, Greenwood RJ, Rothwell JC (2008) Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 117: 1641–1659

    Google Scholar 

  • Tombari D, Loubinoux I, Pariente J et al. (2004) A longitudinal fMRT study: in recovering and then in clinically stable sub–cortical stroke patients. Neuroimage 23: 827–839

    PubMed  Google Scholar 

  • Van Meer MP, van der Marel K, Wang K et al. (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting–state interhemispheric functional connectivity. J Neurosci 30: 3964–3972

    PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD et al. (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83–86

    PubMed  CAS  Google Scholar 

  • Von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. Bergmann, Wiesbaden

    Google Scholar 

  • Wang L, Yu C, Chen H et al. (2010) Dynamic functional reorganization of the motor execution network after stroke. Brain 133: 1224–1238

    PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRT study. Brain 126: 2476–2496

    PubMed  CAS  Google Scholar 

  • Ward NS, Newton JM, Swayne OB et al. (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129: 809–819

    PubMed  Google Scholar 

  • Warren JE, Crinion JT, Lambon Ralph MA, Wise RJ (2009) Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 132: 3428–3442

    PubMed  Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31: 463–472

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Takasawa M, Kajiyama K, Baron JC, Yamaguchi T (2007) Deterioration of hemiparesis after recurrent stroke in the unaffected hemisphere: Three further cases with possible interpretation. Cerebrovasc Dis 23: 35–39

    PubMed  Google Scholar 

13.2 Literatur

  • Barker AT, Jalinous R, Freeston IL (1985) Non–invasive magnetic stimulation of human motor cortex. Lancet 1: 1106–1107

    PubMed  CAS  Google Scholar 

  • Berner J, Schönfeldt–Lecuona C, Nowak DA (2007) Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex. Neuropsychologia 45: 1931–1938

    PubMed  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto–parietal circuit for object manipulation in man: evidence from an fMRI–study. Eur J Neurosci 11: 3276–3286

    PubMed  CAS  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low–frequency transcranial magnetic stimulation. Neurology 48: 1398–1403

    PubMed  CAS  Google Scholar 

  • Chouinard PA, van der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90: 1071–1083

    PubMed  Google Scholar 

  • Chouinard PA, Leonard G, Paus T (2005) Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. J Neurosci 2; 25(9): 2277–2284

    CAS  Google Scholar 

  • Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia, Epub ahead of print

    Google Scholar 

  • Dafotakis M, Sparing R, Fink GR, Nowak DA (2008) Differential roles of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Brain Research 1228: 73–80

    PubMed  CAS  Google Scholar 

  • Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 22; 26(8): 2260–2268

    Google Scholar 

  • Davare M, Andres M, Clerget E, Thonnard JL, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 11; 27(15): 3974–3980

    CAS  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453: 525–546

    PubMed  CAS  Google Scholar 

  • Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117: 1808–1813

    Google Scholar 

  • Freund HJ, Hummelsheim H (1985) Lesions of premotor cortex in man. Brain 108: 697–733

    PubMed  Google Scholar 

  • Fritsch G, Hitzig E (1870) Über die electrische Erregbarkeit des Großhirns. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 37: 300–332

    Google Scholar 

  • Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased cortico–spinal excitability after subthreshold 1Hz rTMS over lateral premotor cortex. Neurology 57: 449–455

    PubMed  CAS  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204: 475–491

    PubMed  Google Scholar 

  • Hess CW, Mills KR, Murray NM (1987) Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol 388: 397–419

    PubMed  CAS  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Thetaburst stimulation of the human motor cortex. Neuron 45: 201–206

    PubMed  CAS  Google Scholar 

  • Ingram DA, Swash M (1985) Human corticospinal tract conduction velocity. Lancet 2: 1369

    PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314–320

    PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71: 59–71

    PubMed  CAS  Google Scholar 

  • Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2006) Acute remapping within the motor system induced by low–frequency repetitive transcranial magnetic stimulation. J Neurosci 23: 5308–5318

    Google Scholar 

  • Leyton ASF, Sherrington CS (1917) Observations on the excitable cortex of chimapnzee, orang–utan and gorilla. Q J Exp Physiol 11: 135–222

    Google Scholar 

  • Matelli M, Luppino G (2000) Parietofrontal circuits: parallel channels for sensory–motor integration. Adv Neurol 84: 51–61

    PubMed  CAS  Google Scholar 

  • Meyer BU, Röricht S, Gräfin von Einsiedel H, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118: 429–440

    PubMed  Google Scholar 

  • Muir RB, Lemon RN (1983) Cortico–sponal neurons with a special role in precision grip. Brain Res 261: 312–316

    PubMed  CAS  Google Scholar 

  • Nowak DA, Berner J, Herrnberger B, Kammer T, Groen G, Schönfeldt– Lecuona C (2008) Continuous Theta–burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting. Cortex 45: 473–482

    PubMed  Google Scholar 

  • Nowak DA, Timmann D, Hermsdörfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 2; 45(4): 696–703

    Google Scholar 

  • Nowak DA, Voss M, Huang YZ, Wolpert DM, Rothwell JC (2005) Highfrequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. Eur J Neurosci 22(9): 2392–2396

    PubMed  Google Scholar 

  • Olivier E, Davare M, Andres M, Fadiga L (2007) Precision grip in humans: from motor control to cognition. Curr Opinion Neurobiol 17: 644–648

    CAS  Google Scholar 

  • Pascual–Leone A, Valls–Sole J, Wassermann EM, Hallett M (1994) Responses to rapid–rate transcranial magnetic stimulation of the human motor cortex. Brain 117: 847–858

    PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Google Scholar 

  • Petrides M (1985) Deficits in nonspatial conditional associative learning after frontal and temporal–lobe lesions in man. Neuropsychologia 16: 601–614

    Google Scholar 

  • Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 2; 26(31): 8176–8182

    CAS  Google Scholar 

  • Robertson EM, Théoret H, Pascual–Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15: 948–960

    PubMed  CAS  Google Scholar 

  • Rounis E, Stephan KE, Lee L, Siebner HR, Pesenti A, Friston KJ, Rothwell JC, Frackowiak RS (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26: 9629–9638

    PubMed  CAS  Google Scholar 

  • Taubert M, Dafotakis M, Sparing R, Eickhoff S, Leuchte S, Fink GR, Nowak DA (2008) Virtual lesions of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuomotor mapping. Eur J Neurosci, in Druck

    Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal–dependent on–line adjustments of grasp. Nat Neurosci 8(4): 505–511

    PubMed  CAS  Google Scholar 

  • Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. Neuroimage 36(Suppl 2): T77–86

    PubMed  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neuophysiol 108: 1–16

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, G., Grefkes, C., Nowak, D. (2011). Funktionelle kortikale Korrelate der Handfunktion. In: Handfunktionsstörungen in der Neurologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17257-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17257-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17256-4

  • Online ISBN: 978-3-642-17257-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics