Skip to main content

Numerical Solution of Stochastic Differential Equations in Finance

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

This chapter is an introduction and survey of numerical solution methods for stochastic differential equations. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial systems. We include a review of fundamental concepts, a description of elementary numerical methods and the concepts of convergence and order for stochastic differential equation solvers. In the remainder of the chapter we describe applications of SDE solvers to Monte-Carlo sampling for financial pricing of derivatives. Monte-Carlo simulation can be computationally inefficient in its basic form, and so we explore some common methods for fostering efficiency by variance reduction and the use of quasi-random numbers. In addition, we briefly discuss the extension of SDE solvers to coupled systems driven by correlated noise, which is applicable to multiple asset markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Box, G. E. P., & Muller, M. (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29, 610–611.

    Article  MATH  Google Scholar 

  • Burrage, K., Burrage, P. M., & Mitsui, T. (2000). Numerical solutions of stochastic differential equations - implementation and stability issues. Journal of Computational and Applied Mathematics, 125, 171–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Burrage, K., Burrage, P. M., & Tian, T. (2004). Numerical methods for strong solutions of stochastic differential equations: an overview. Proceedings of the Royal Society of London A, 460, 373–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Fishman, G. S. (1996). Monte Carlo: concepts, algorithms, and applications. Berlin: Springer.

    MATH  Google Scholar 

  • Gentle, J. E. (2003). Random number generation and Monte Carlo methods (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Gikhman, I., & Skorokhod, A. (1972). Stochastic differential equations. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Glasserman, P. (2004). Monte Carlo methods in financial engineering. New York: Springer.

    MATH  Google Scholar 

  • Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90.

    Article  MathSciNet  Google Scholar 

  • Hellekalek, P. (1998). Good random number generators are (not so) easy to find. Mathematics and Computers in Simulation, 46, 485–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43, 525–546.

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, D. J., & Kloeden, P. (2005). Numerical methods for nonlinear stochastic differential equations with jumps. Numerische Mathematik, 101, 101–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, D. J., Mao, X., & Stuart, A. (2002). Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis, 40, 1041–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Hull, J. C. (2002). Options, futures, and other derivatives (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Jentzen, A., Kloeden, P., & Neuenkirch, A. (2008). Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients. Numerische Mathematik, 112, 41–64.

    Article  MathSciNet  Google Scholar 

  • Klebaner, F. (1998). Introduction to stochastic calculus with applications. London: Imperial College Press.

    MATH  Google Scholar 

  • Kloeden, P., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin: Springer.

    MATH  Google Scholar 

  • Kloeden, P., Platen, E., & Schurz, H. (1994). Numerical solution of SDE through computer experiments. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Lamba, H., Mattingly, J. C., & Stuart, A. (2007). An adaptive Euler-Maruyama scheme for SDEs: convergence and stability. IMA Journal of Numerical Analysis, 27, 479–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsaglia, G., & Zaman, A. (1991). A new class of random number generators. Annals of Applied Probability, 1, 462–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsaglia, G., & Tsang, W. W. (2000). The ziggurat method for generating random variables. Journal of Statistical Software, 5, 1–7.

    Google Scholar 

  • Maruyama, G. (1955). Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di Palermo, 4, 48–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Milstein, G. (1988). A theorem on the order of convergence of mean-square approximations of solutions of stochastic differential equations. Theory of Probability and Its Applications, 32, 738–741.

    Article  Google Scholar 

  • Milstein, G. (1995). Numerical integration of stochastic differential equations. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Milstein, G., & Tretyakov, M. (1997). Mean-square numerical methods for stochastic differential equations with small noises. SIAM Journal on Scientific Computing, 18, 1067–1087.

    Article  MathSciNet  MATH  Google Scholar 

  • Milstein, G., & Tretyakov, M. (2004). Stochastic numerics for mathematical physics. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Milstein, G., & Tretyakov, M. (2005). Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM Journal on Numerical Analysis, 43, 1139–1154.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. Philadelphia: SIAM Publications.

    Book  MATH  Google Scholar 

  • Niederreiter, H. (2010). Low-discrepancy simulation. In H. Niederreiter (Ed.), Handbook of Computational Finance 2011 (pp. 715–741). Berlin: Springer.

    Google Scholar 

  • Oksendal, B. (1998). Stochastic differential equations: an introduction with applications (5th ed.). Berlin: Springer.

    Google Scholar 

  • Park, S., & Miller, K. (1988). Random number generators: good ones are hard to find. Communications of the ACM, 31, 1192–1201.

    Article  MathSciNet  Google Scholar 

  • Platen, E. (1987). Derivative-free numerical methods for stochastic differential equations. Lecture Notes in Control and Information Sciences, 96, 187–193.

    Article  Google Scholar 

  • Platen, E. (1999). An introduction to numerical methods for stochastic differential equations. Acta Numerica, 8, 197–246.

    Article  MathSciNet  Google Scholar 

  • Platen, E., & Wagner, W. (1982). On a Taylor formula for a class of Ito processes. Probability and Mathematical Statistics, 3, 37–51.

    MathSciNet  MATH  Google Scholar 

  • Romisch, W., & Winkler, R. (2006). Stepsize control for mean-square numerical methods for stochastic differential equations with small noise. SIAM Journal on Scientific Computing, 28, 604–625.

    Article  MathSciNet  Google Scholar 

  • Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. New York: Wiley.

    Book  MATH  Google Scholar 

  • Rumelin, W. (1982). Numerical treatment of stochastic differential equations. SIAM Journal of Numerical Analysis, 19, 604–613.

    Article  MathSciNet  Google Scholar 

  • Saito, Y., & Mitsui, T. (1996). Stability analysis of numerical schemes for stochastic differential equations. SIAM Journal of Numerical Analysis, 33, 2254–2267.

    Article  MathSciNet  MATH  Google Scholar 

  • Sauer, T. (2006). Numerical analysis. Boston: Pearson.

    Google Scholar 

  • Steele, J. M. (2001). Stochastic calculus and financial applications. New York: Springer.

    Book  MATH  Google Scholar 

  • Talay, D., & Tubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Analysis and Applications, 8, 483–509.

    Article  MathSciNet  MATH  Google Scholar 

  • Tocino, A., & Ardanuy, R. (2002). Runge-Kutta methods for numerical solution of stochastic differential equations. Journal of Computational and Applied Mathematics, 138, 219–241.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer, T. (2012). Numerical Solution of Stochastic Differential Equations in Finance. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_19

Download citation

Publish with us

Policies and ethics