Skip to main content

Approximating Probability Measures on Manifolds via Radial Basis Functions

  • Conference paper
  • First Online:
Approximation Algorithms for Complex Systems

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 3))

Summary

Approximating a given probability measure by a sequence of normal- ized counting measures is an interesting problem and has broad applications in many areas of mathematics and engineering. If the target measure is the uniform distri- bution on a manifold then such approximation gives rise to the theory of uniform distribution of point sets and the corresponding discrepancy estimates. If the target measure is the equilibrium measure on a manifold, then such approximation leads to the minimization of certain energy functionals, which have applications in dis- cretization of manifolds, best possible site selection for polynomial interpolation and Monte Carlo method, among others. Traditionally, polynomials are the major tool in this arena, as have been demonstrated in the celebrated Weyl’s criterion, Erd?os- Turán inequalities. Recently, the novel approach of employing radial basis functions (RBFs) has been successful, especially in higher dimensional manifolds. In its gen- eral methodology, RBFs provide an efficient vehicle that allows a certain type of linear translation operators to act in various function spaces, including reproducing kernel Hilbert spaces (RKHS) associated with RBFs. This approach is crucial in the establishment of the LeVeque type inequalities that are capable of giving dis- crepancy estimates for some minimal energy configurations. We provide an overview of the recent developments outlined above. In the final section we show that many results on the sphere can be generalised to other compact homogeneous manifolds. We also propose a few research topics for future investigation in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Baxter and S. Hubbert: Radial basis functions for the sphere. In: Progress in Multivariate Approximation, International Series of Numerical Mathematics, vol. 137, Birkh¨auser, Basel, 2001, 33–47.

    Google Scholar 

  2. J. Beck: On the sum of distances between N points on a sphere.Mathematika 31, 1984, 33–41.

    Google Scholar 

  3. J. Beck and W.W.L. Chen: Irregularities of Distribution. Cambridge Tracts in Math., vol. 89, Cambridge University Press, 1987.

    Google Scholar 

  4. J.S. Brauchart: Note on a generalized invariance principle and its relevance for cap discrepancy and energy. In: Modern Developments in Multivariate Approximation, International Series of Numerical Mathematics, vol. 145, Birkh¨auser, Basel, 2003, 41–55.

    Google Scholar 

  5. J.S. Brauchart: Optimal logarithmic energy points on the unit sphere. Math. Comp. 77, 2008, 1599–1613.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. zu Castell and F. Filbir: Radial basis functions and corresponding zonal series expansions on the sphere. J. Approx. Theory 134, 2005, 65–79.

    Google Scholar 

  7. D. Chen, V.A. Menegatto, and X. Sun: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 131, 2003, 2733–2740.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.B. Damelin, J. Levesley, and X. Sun: Energy estimates and the Weyl criterion on homogeneous manifolds. In: Algorithms for Approximation, A. Iske and J. Levesley (eds.), Springer, Berlin, 2007, 359–367.

    Google Scholar 

  9. M. Drmota and R.F. Tichy: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, 1651. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  10. N. Dyn, F.J. Narcowich, and J.D. Ward: Variational principles and Sobolevtype estimates for generalized interpolation on a Riemannian manifold. Constr. Approx. 15, 1999, 175–208.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Erd˝os and P. Tur´an: On a problem in the theory of uniform distribution I and II. Indag. Math. 10, 1948, 370–378 and 406–413.

    Google Scholar 

  12. I.M. Gel’fand and N.Ya. Vilenkin: Generalized Functions, vol. 4. Academic Press, New York and London, 1964.

    Google Scholar 

  13. P.J. Grabner: Erd˝os-Tur´an type discrepancy bounds. Mh. Math. 111, 1991, 127–135.

    Article  MATH  MathSciNet  Google Scholar 

  14. D.P. Hardin and E.B. Saff: Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds. Adv. Math. 193, 2005, 174–204.

    Article  MATH  MathSciNet  Google Scholar 

  15. D.P. Hardin and E.B. Saff: Discretizing manifolds via minimum energy points. Notices of Amer. Math. Soc. 51(10), 2004, 1186–1194.

    MATH  MathSciNet  Google Scholar 

  16. D.P. Hardin, E.B. Saff, and H. Stahl: The support of the logarithmic equilibrium measure on sets of revolution. J. Math. Phys. 48, 2007, 022901 (14pp).

    Google Scholar 

  17. J.F. Koksma: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1. Mathematica B (Zutphen) 11 (1941/1943), 7–11.

    Google Scholar 

  18. A.B.J. Kuijlaars and E.B. Saff: Asymptotics for minimal discrete energy on the sphere. Trans. Amer. Math. Soc. 350, 1998, 523–538.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley & Sons, 1974.

    Google Scholar 

  20. N.S. Landkov: Foundations of Modern Potential Theory. Springer-Verlag, Berlin, Heidelberg, New York, 1972.

    Google Scholar 

  21. W.J. LeVeque: An inequality connected with the Weyl’s criterion for uniform distribution. Proc. Symp. Pure Math. 129, 1965, 22–30.

    MathSciNet  Google Scholar 

  22. J. Levesley and D.L. Ragozin: The fundamentality of translates of spherical functions on compact homogeneous spaces. Journal of Approximation Theory 103, 2000, 252–268.

    Article  MATH  MathSciNet  Google Scholar 

  23. X.-J. Li and J. Vaaler: Some trigonometric extremal functions and the Erd˝os- Tur´an type inequalities. Indiana University Mathematics Journal 48(1), 1999, 183–236.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.L. Montgomery: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics, no. 84, American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  25. C. M¨uller: Spherical Harmonics. Lecture Notes in Math. 17, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  26. F.J. Narcowich, X. Sun, and J.D.Ward: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27(1), 2007, 107–124.

    Article  MATH  MathSciNet  Google Scholar 

  27. F.J. Narcowich, X. Sun, J. Ward, and H. Wendland: Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7(3), 2007, 369–390.

    Article  MATH  MathSciNet  Google Scholar 

  28. F.J. Narcowich, X. Sun, J.D. Ward, and Z. Wu: LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres. Preprint.

    Google Scholar 

  29. F.J. Narcowich and J.D. Ward: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 2002, 1393–1410.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Niederreiter: Random Number Generation and Quasi Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63, SIAM, Philadelphia, 1992.

    Google Scholar 

  31. G. Polya and G. Szeg˝o: On the transfinite diameters (capacity constant) of subsets in the plane and in space. J. f¨ur Reine und Angew. Math. 165, 1931, 4–49 (in German).

    Google Scholar 

  32. A. Ron and X. Sun: Strictly positive definite functions on spheres in Euclidean spaces. Math. Comp. 65(216), 1996, 1513–1530.

    Article  MATH  MathSciNet  Google Scholar 

  33. C. Runge: ¨Uber empirische Funktionen und die Interpolation zwischen ¨aquidistanten Ordinaten. Zeitschrift f¨ur Mathematik und Physik 46, 1901, 224–243.

    Google Scholar 

  34. I.J. Schoenberg: Metric spaces and completely monotone functions. Ann. of Math. 39, 1938, 811–841.

    Article  MathSciNet  Google Scholar 

  35. I.J. Schoenberg: Positive definite functions on spheres. Duke Math. J. 9, 1942, 96–108.

    Article  MATH  MathSciNet  Google Scholar 

  36. K.B. Stolarsky: Sums of distance between points on a sphere II. Proc. Amer. Math. Soc. 41, 1973, 575–582.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Stein and G. Weiss: Introduction to Fourier Analysis on Euclidean Space. Princeton University Press, Princeton, 1971.

    Google Scholar 

  38. F.E. Su: A LeVeque-type lower bound for discrepancy. In: Monte Carlo and Quasi-Monte Carlo Methods 1998, H. Niederreiter and J. Spanier (eds.), Springer-Verlag, 2000, 448–458.

    Google Scholar 

  39. F.E. Su: Methods for Quantifying Rates of Convergence on Groups. Ph.D. thesis, Harvard University, 1995.

    Google Scholar 

  40. X. Sun and Z. Chen: Spherical basis functions and uniform distribution of points on spheres. J. Approx. Theory 151(2), 2008, 186–207.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Vaaler: Some extremal functions in Fourier analysis. Bulletin (New Series) of The American Mathematical Society 12, 1985, 183–216.

    Google Scholar 

  42. J. Vaaler: A refinement of the Erd˝os-Tur´an inequality. In: Number Theory with an Emphasis on the Markoff Spectrum, A.D. Pollington, W. Moran, (eds.), Marcel Dekker, 1993, 163–270.

    Google Scholar 

  43. G.Wagner: On the means of distances on the surface of a sphere (lower bounds). Pacific J. Math. 144, 1990, 389–398.

    MATH  MathSciNet  Google Scholar 

  44. G.Wagner: On the means of distances on the surface of a sphere (upper bounds). Pacific J. Math. 153, 1992, 381-396.

    Google Scholar 

  45. G. Wagner: On a new method for constructing good point sets on spheres. Discrete & Comput. Geom. 9, 1993, 111–129.

    Article  MATH  MathSciNet  Google Scholar 

  46. G.N. Watson: A Treatise on the Theory of Bessel Functions. 2nd edition, Cambridge University Press, London, 1966.

    Google Scholar 

  47. H. Weyl: ¨Uber die Gleichverteilung von Zahlen modulo 1. Math. Ann. 77, 1916, 313–352.

    Article  MATH  MathSciNet  Google Scholar 

  48. Y. Xu and E.W. Cheney: Strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 116, 1992, 977–981.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levesley, J., Sun, X. (2011). Approximating Probability Measures on Manifolds via Radial Basis Functions. In: Georgoulis, E., Iske, A., Levesley, J. (eds) Approximation Algorithms for Complex Systems. Springer Proceedings in Mathematics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16876-5_7

Download citation

Publish with us

Policies and ethics