Skip to main content

Form Assessment in Coordinate Metrology

  • Conference paper
  • First Online:
Approximation Algorithms for Complex Systems

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 3))

Summary

A major activity in quality control in manufacturing engineering in- volves comparing a manufactured part with its design specification. The design specification usually has two components, the first defining the ideal geometry for the part and the second placing limits on how far a manufactured artefact can depart from ideal geometry and still be fit for purpose. The departure from ideal geometry is known as form assessment. Traditionally, the assessment of fitness for purpose was achieved using hard gauges in which the manufactured part was physi- cally compared with the gauge. Increasingly, part assessment is done on the basis of coordinate data gathered by a coordinate measuring machine and involves fitting ge- ometric surfaces to the data. Two fitting criteria are commonly used, least squares and Chebyshev, with the former being far more popular. Often the ideal geome- try is specified in terms of standard geometric elements: planes, spheres, cylinders, etc. However, many modern engineering surfaces such as turbine blades, aircraft wings, etc., are so-called ‘free form geometries’, complex shapes often represented in computer-aided design packages by parametric surfaces such as nonuniform ra- tional B-splines. In this paper, we consider i) computational approaches to form assessment according to least squares and Chebyshev criteria, highlighting issues that arise when free form geometries are involved, and ii) how reference data can be generated to test the performance of form assessment software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Ahn, E. Westk¨amper, and W. Rauh: Orthogonal distance fitting of parametric curves and surfaces. In: Algorithms for Approximation IV, J. Levesley, I.J. Anderson, and J.C. Mason (eds.), University of Huddersfield, 2002, 122–129.

    Google Scholar 

  2. I.J. Anderson, M.G. Cox, A.B. Forbes, J.C. Mason, and D.A. Turner: An efficient and robust algorithm for solving the footpoint problem. In: Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche, and L.L. Schumaker (eds.), Vanderbilt University Press, Nashville TN, 1998, 9–16.

    Google Scholar 

  3. G.T. Anthony, H.M. Anthony, M.G. Cox, and A.B. Forbes: The Parametrization of Fundamental Geometric Form. Report EUR 13517 EN, Commission of the European Communities (BCR Information), Luxembourg, 1991.

    Google Scholar 

  4. I. Barrodale and C. Phillips: Algorithm 495: Solution of an overdetermined system of linear equations in the Chebyshev norm. Transactions of Mathematical Software, 1975, 264–270.

    Google Scholar 

  5. R. Bartels and A.R. Conn: A programme for linearly constrained discrete _1 problems. ACM Trans. Math. Soft. 6(4), 1980, 609–614.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bartels and G.H. Golub: Chebyshev solution to an overdetermined linear system. Comm. ACM 11(6), 1968, 428–430.

    Article  MathSciNet  Google Scholar 

  7. M. Bartholomew-Biggs, B.P. Butler, and A.B. Forbes: Optimisation algorithms for generalised regression on metrology. In: Advanced Mathematical and Computational Tools in Metrology IV, P. Ciarlini, A.B. Forbes, F. Pavese, and D. Richter (eds.), World Scientific, Singapore, 2000, 21–31.

    Google Scholar 

  8. A. Bj¨orck: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

    Google Scholar 

  9. P.T. Boggs, R.H. Byrd, and R.B. Schnabel: A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM Journal of Scientific and Statistical Computing 8(6), 1987, 1052–1078.

    Article  MATH  MathSciNet  Google Scholar 

  10. P.T. Boggs, J.R. Donaldson, R.H. Byrd, and R.B. Schnabel: ODRPACK: software for weighted orthogonal distance regression. ACM Trans. Math. Soft. 15(4), 1989, 348–364.

    Article  MATH  Google Scholar 

  11. B.P. Butler, M.G. Cox, and A.B. Forbes: The reconstruction of workpiece surfaces from probe coordinate data. In: Design and Application of Curves and Surfaces, R.B. Fisher (ed.), IMA Conference Series, Oxford University Press, 1994, 99–116.

    Google Scholar 

  12. B.P. Butler, M.G. Cox, A.B. Forbes, S.A. Hannaby, and P.M. Harris: A methodology for testing the numerical correctness of approximation and optimisation software. In: The Quality of Numerical Software: Assessment and Enhancement, R. Boisvert (ed.), Chapman and Hall, 1997, 138–151.

    Google Scholar 

  13. K. Carr and P. Ferreira: Verification of form tolerances part I: basic issues, flatness and straightness. Precision Engineering 17(2), 1995, 131–143.

    Article  Google Scholar 

  14. K. Carr and P. Ferreira: Verification of form tolerances part II: cylindricity and straightness of a median line. Precision Engineering 17(2), 1995, 144–156.

    Article  Google Scholar 

  15. A.R. Conn and Y. Li: An Efficient Algorithm for Nonlinear Minimax Problems. Report CS-88-41, University of Waterloo Computer Science Department, Waterloo, Ontario, Canada, November 1989.

    Google Scholar 

  16. M.G. Cox: The least-squares solution of linear equations with block-angular observation matrix. In: Advances in Reliable Numerical Computation, M.G. Cox and S. Hammarling (eds.), Oxford University Press, 1989, 227–240.

    Google Scholar 

  17. M.G. Cox, M.P. Dainton, A.B. Forbes, and P.M. Harris: Validation of CMM form and tolerance assessment software. In: Laser Metrology and Machine Performance V, G.N. Peggs (ed.), WIT Press, Southampton, 2001, 367–376.

    Google Scholar 

  18. M.G. Cox and A.B. Forbes: Strategies for Testing Form Assessment Software. Report DITC 211/92, National Physical Laboratory, Teddington, December 1992.

    Google Scholar 

  19. R. Drieschner: Chebyshev approximation to data by geometric elements. Numerical Algorithms 5, 1993, 509–522.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Drieschner, B. Bittner, R. Elligsen, and F. W¨aldele: Testing Coordinate Measuring Machine Algorithms, Phase II. Report EUR 13417 EN, Commission of the European Communities (BCR Information), Luxembourg, 1991.

    Google Scholar 

  21. S.C. Feng and T.H. Hopp: A Review of Current Geometric Tolerancing Theories and Inspection Data Analysis Algorithms. Report NISTIR 4509, National Institute of Standards and Technology, U.S., 1991.

    Google Scholar 

  22. R. Fletcher: Practical Methods of Optimization. 2nd edition, John Wiley and Sons, Chichester, 1987.

    Google Scholar 

  23. A.B. Forbes: Fitting an Ellipse to Data. Report DITC 95/87, National Physical Laboratory, Teddington, 1987.

    Google Scholar 

  24. A.B. Forbes: Least-Squares Best-Fit Geometric Elements. Report DITC 140/89, National Physical Laboratory, Teddington, 1989.

    Google Scholar 

  25. A.B. Forbes: Least squares best fit geometric elements. In: Algorithms for Approximation II, J.C. Mason and M.G. Cox (eds.), Chapman & Hall, London, 1990, 311–319.

    Google Scholar 

  26. A.B. Forbes: Model parametrization. In: Advanced Mathematical Tools for Metrology, P. Ciarlini, M.G. Cox, F. Pavese, and D. Richter (eds.), World Scientific, Singapore, 1996, 29–47.

    Google Scholar 

  27. A.B. Forbes: Efficient algorithms for structured self-calibration problems. In: Algorithms for Approximation IV, J. Levesley, I. Anderson, and J.C. Mason (eds.), University of Huddersfield, 2002, 146–153.

    Google Scholar 

  28. A.B. Forbes: Structured nonlinear Gauss-Markov problems. In: Algorithms for Approximation V, A. Iske and J. Levesley (eds.), Springer, Berlin, 2007, 167– 186.

    Google Scholar 

  29. A.B. Forbes, P.M. Harris, and I.M. Smith: Correctness of free form surface fitting software. In: Laser Metrology and Machine Performance VI, D.G. Ford (ed.), WIT Press, Southampton, 2003, 263–272.

    Google Scholar 

  30. W. Gander, G.H. Golub, and R. Strebel: Least squares fitting of circles and ellipses. BIT 34, 1994.

    Google Scholar 

  31. P.E. Gill, W. Murray, and M.H. Wright: Practical Optimization. Academic Press, London, 1981.

    Google Scholar 

  32. G.H. Golub and C.F. Van Loan: Matrix Computations. 3rd edition, John Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  33. P. Hansen: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6, 1994, 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  34. H.-P. Helfrich and D. Zwick: A trust region method for implicit orthogonal distance regression. Numerical Algorithms 5, 1993, 535–544.

    Article  MATH  MathSciNet  Google Scholar 

  35. H.-P. Helfrich and D. Zwick: Trust region algorithms for the nonlinear distance problem. Numerical Algorithms 9, 1995, 171–179.

    Article  MATH  MathSciNet  Google Scholar 

  36. T.H. Hopp: Least-Squares Fitting Algorithms of the NIST Algorithm Testing System. Technical report, National Institute of Standards and Technology, 1992.

    Google Scholar 

  37. ISO: ISO 10360–6:2001 Geometrical Product Specifications (GPS) – Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM) – Part 6: Estimation of Errors in Computing Gaussian Associated Features. International Organization for Standardization, Geneva, 2001.

    Google Scholar 

  38. ISO: BS EN ISO 1101: Geometric Product Specifications (GPS) – Geometric Tolerancing – Tolerances of Form, Orientation, Location and Run Out. International Organization for Standardization, Geneva, 2005.

    Google Scholar 

  39. X. Jiang, X. Zhang, and P.J. Scott: Template matching of freeform surfaces based on orthogonal distance fitting for precision metrology. Measurement Science and Technology 21(4), 2010.

    Google Scholar 

  40. H.-Y. Lai, W.-Y. Jywe, C.-K. Chen, and C.-H. Liu: Precision modeling of form errors for cylindricity evaluation using genetic algorithms. Precision Engineering 24, 2000, 310–319.

    Article  Google Scholar 

  41. K. Madsen: An algorithm for minimax solution of overdetermined systems of non-linear equations. J. Inst. Math. Appl. 16, 1975, 321–328.

    Article  MATH  MathSciNet  Google Scholar 

  42. K. Madsen and J. Hald: A 2-stage algorithm for minimax optimization. In: Lecture Notes in Control and Information Sciences 14, Springer-Verlag, 1979, 225–239.

    Google Scholar 

  43. MathWorks, Inc., Natick, Mass, http://www.mathworks.com.

  44. G. Moroni and S. Petr`o: Geometric tolerance evaluation: a discussion on minimum zone fitting algorithms. Precision Engineering 32, 2008, 232–237.

    Google Scholar 

  45. W. Murray and M.L. Overton: A projected Lagrangian algorithm for nonlinear minimax optimization. SIAM Journal for Scientific and Statistical Computing 1(3), 1980, 345–370.

    Article  MATH  MathSciNet  Google Scholar 

  46. G.L. Nemhhauser, A.H.G. Rinnooy Kan, and M.J. Todd (eds.): Handbooks in Operations Research and Management Science, Volume 1: Optimization. North- Holland, Amsterdam, 1989.

    Google Scholar 

  47. The Numerical Algorithms Group: The NAG Fortran Library, Mark 22, Introductory Guide, 2009. http://www.nag.co.uk/.

  48. M.R. Osborne and G.A. Watson. An algorithm for minimax approximation in the nonlinear case. Computer Journal 12, 1969, 63–68.

    MATH  MathSciNet  Google Scholar 

  49. L. Piegl and W. Tiller: The NURBS Book. 2nd edition, Springer-Verlag, New York, 1996.

    Google Scholar 

  50. V. Pratt: Direct least-squares fitting of algebraic surfaces. Computer Graphics 21(4), July 1987, 145–152.

    Article  MathSciNet  Google Scholar 

  51. G.L. Samuel and M.S. Shunmugam: Evaluation of circularity from coordinate data and form data using computational geometric techniques. Precision Engineering 24, 2000, 251–263.

    Article  Google Scholar 

  52. G.L. Samuel and M.S. Shunmugam: Evaluation of sphericity error from form data using computational geometric techniques. Int. J. Mach. Tools & Manuf. 42, 2002, 405–416.

    Article  Google Scholar 

  53. C.M. Shakarji and A. Clement: Reference algorithms for Chebyshev and onesided data fitting for coordinate metrology. CIRP Annals - Manufacturing Technology 53, 2004, 439–442.

    Article  Google Scholar 

  54. D. Sourlier and W. Gander: A new method and software tool for the exact solution of complex dimensional measurement problems. In: Advanced Mathematical Tools in Metrology II, P. Ciarlini, M.G. Cox, F. Pavese, and D. Richter (eds.), World Scientific, Singapore, 1996, 224–237.

    Google Scholar 

  55. D.A. Turner, I.J. Anderson, J.C. Mason, M.G. Cox, and A.B. Forbes: An efficient separation-of-variables approach to parametric orthogonal distance regression. In: Advanced Mathematical Tools in Metrology IV, P. Ciarlini, A.B. Forbes, F. Pavese, and R. Richter (eds.), World Scientific, Singapore, 2000, 246–255.

    Google Scholar 

  56. N. Venkaiah and M.S. Shunmugam: Evaluation of form data using computational geometric techniques - part I: circularity error. Int. J. Mach. Tools & Manuf. 47, 2007, 1229–1236.

    Article  Google Scholar 

  57. N. Venkaiah and M.S. Shunmugam: Evaluation of form data using computational geometric techniques - part II: cylindricity error. Int. J. Mach. Tools & Manuf. 47, 2007, 1237–1245.

    Article  Google Scholar 

  58. G.A. Watson: The minimax solution of an overdetermined system of non-linear equations. Journal of the Institute of Mathematics and its Applications 23, 1979, 167–180.

    Article  MATH  MathSciNet  Google Scholar 

  59. G.A. Watson: Approximation Theory and Numerical Methods. John Wiley & Sons, Chichester, 1980.

    Google Scholar 

  60. G.A. Watson: Some robust methods for fitting parametrically defined curves or surfaces to measured data. In: Advanced Mathematical and Computational Tools in Metrology IV, P. Ciarlini, A.B. Forbes, F. Pavese, and D. Richter (eds.), World Scientific, Singapore, 2000, 256–272.

    Google Scholar 

  61. D. Zwick: Algorithms for orthogonal fitting of lines and planes: a survey. In: Advanced Mathematical Tools in Metrology II, P. Ciarlini, M.G. Cox, F. Pavese, and D. Richter (eds.), World Scientific, Singapore, 1996, 272–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forbes, A.B., Minh, H.D. (2011). Form Assessment in Coordinate Metrology. In: Georgoulis, E., Iske, A., Levesley, J. (eds) Approximation Algorithms for Complex Systems. Springer Proceedings in Mathematics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16876-5_4

Download citation

Publish with us

Policies and ethics