Skip to main content

Hysteresis Modeling of Piezoelectric Actuators Using the Fuzzy System

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

Abstract

An approach of hysteresis modeling in piezoelectric actuators is presented based on the multi-input single-output (MISO) fuzzy system. The proposed model adopts first-order Takagi-Sugeno (T-S) fuzzy system and transforms the multi-valued hysteresis into a one-to-one mapping with the extended input space vector. The generated fuzzy subspaces (multi-dimensional fuzzy sets) assign the maximum membership degree to the input data vectors. Fewer fuzzy subspaces are obtained by introducing the nearest neighbor and super radius concepts. The consequent parameter optimization is implemented after training the fuzzy system. Experimental results demonstrate that this methodology is algorithmically easy and can achieve high modeling accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ang, W.T., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics 12(2), 134–142 (2007)

    Article  Google Scholar 

  2. Aphale, S.S., Devasia, S., Moheimani, S.O.R.: High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties. Nanotechnology 19(12), 125503 (2008)

    Article  Google Scholar 

  3. Hu, H., Georgiu, H.M.S., Benmrad, R.: Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Transactions on Mechatronics 10(2), 230–239 (2005)

    Article  Google Scholar 

  4. Jiles, D.C., Thoelke, J.B.: Theory of ferromagnetic hysteresis determination of model parameters from experimental hysteresis loops. IEEE Transactions on Magnetics 25(5), 3928–3930 (1989)

    Article  Google Scholar 

  5. Bashash, S., Jalili, N.: Robust multiple frequency trajectory tracking control of piezoelectrically driven micro nanopositioning systems. IEEE Transactions on Control Systems Technology 15, 867–878 (2007)

    Article  Google Scholar 

  6. Al Janaideh, M., Rakheja, S., Su, C.Y.: Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 19(5), 656–670 (2009)

    Article  Google Scholar 

  7. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks 3(5), 807–814 (1992)

    Article  Google Scholar 

  8. Tafazoli, M., Demirli, K.: Fuzzy modeling of hysteresis from input-ouput data. In: IFSA World Congress and 20th NAFIPS International Conference, pp. 3009–3014 (2001)

    Google Scholar 

  9. Azzerboni, B., Carpentieri, M., Finocchio, G., La Foresta, F.: A fuzzy model of scalar hysteresis on soft magnetic materials. Physica B: Condensed Matter 343(1-4), 132–136 (2004)

    Article  Google Scholar 

  10. Xu, K., Zhang, Z., Mao, J.: Modeling of stress dependent hysteresis nonlinearity based on fuzzy tree for GMA 2008. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 331–335 (2008)

    Google Scholar 

  11. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1), 7–31 (1993)

    Article  Google Scholar 

  12. Wang, L.X.: Adaptive fuzzy systems and control. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  13. Nie, J.: Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme. IEEE Transactions on Fuzzy Systems 5(2), 304–311 (1997)

    Article  Google Scholar 

  14. Wang, L.X., Mendel, J.M.: Generating fuzzy rules from numerical data with applications. IEEE Transactions on System, Man and Cybernetics 22(6), 1414–1427 (1992)

    Article  Google Scholar 

  15. George, T., Haralambos, S., George, B.: A simple algorithm for training fuzzy systems using input–output data. Advances in Engineering Software 34, 247–259 (2003)

    Article  MATH  Google Scholar 

  16. An, J., Yang, Q., Ma, Z.: Study on method of modeling and controlling of magnetostrictive material. In: 17th International Zurich Symposium on Electromagnetic Compatibility, pp. 387–390. IEEE, Piscataway (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, P., Gu, G., Lai, L., Zhu, L. (2010). Hysteresis Modeling of Piezoelectric Actuators Using the Fuzzy System. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics