Skip to main content

Neurophysiology of the Lower Urinary Tract

  • Chapter
  • First Online:
Urinary Tract

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

The lower urinary tract (LUT) has two functions: (1) the storage of waste products in the form of urine and (2) the elimination of those wastes through micturition. The LUT operates in a simple “on–off” fashion, either storing urine or releasing it during voiding. While this activity may seem simple, micturition is controlled by a complex set of peripheral neurons that are, in turn, coordinated by cell groups in the spinal cord, brainstem, and brain. When this careful coordination is interrupted, the control of the bladder is lost, resulting in incontinence or retention of urine. The purpose of this chapter is to review how the neural systems coordinating the activity of the lower urinary tract form neural circuits that are responsible for either maintaining continence (the storage reflex) or inducing micturition (the voiding reflex). We will also discuss the brain centers that enable higher organisms to voluntarily choose the time and place for voiding. Finally, we will discuss how defects in the pathways controlling micturition can lead to urinary incontinence and which treatments may normalize LUT function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams P, Cardozo L, Fall M et al (2002) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn 21:167–178

    Article  PubMed  Google Scholar 

  • Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21:1371–1383

    Article  PubMed  Google Scholar 

  • Andersson KE (2002) Bladder activation: afferent mechanisms. Urology 59:43–50

    Article  PubMed  Google Scholar 

  • Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  CAS  PubMed  Google Scholar 

  • Andersson PO, Sjogren C, Uvnas B et al (1990) Urinary bladder and urethral responses to pelvic and hypogastric nerve stimulation and their relation to vasoactive intestinal polypeptide in the anaesthetized dog. Acta Physiol Scand 138:409–416

    Article  CAS  PubMed  Google Scholar 

  • Andrew J, Nathan PW (1964) Lesions on the anterior frontal lobes and disturbances of micturition and defaecation. Brain 87:233–262

    Article  CAS  PubMed  Google Scholar 

  • Araki I (1994) Inhibitory postsynaptic currents and the effects of GABA on visually identified sacral parasympathetic preganglionic neurons in neonatal rats. J Neurophysiol 72:2903–2910

    CAS  PubMed  Google Scholar 

  • Athwal BS, Berkley KJ, Hussain I et al (2001) Brain responses to changes in bladder volume and urge to void in healthy men. Brain 124:369–377

    Article  CAS  PubMed  Google Scholar 

  • Barrington F (1925) The effect of lesions of the hind- and mid-brain on micturition in the cat. Q J Exp Physiol 15:81–102

    Google Scholar 

  • Birder LA, de Groat WC (1992) The effect of glutamate antagonists on c-fos expression induced in spinal neurons by irritation of the lower urinary tract. Brain Res 580:115–120

    Article  CAS  PubMed  Google Scholar 

  • Birder LA, de Groat WC (1993) Induction of c-fos expression in spinal neurons by nociceptive and nonnociceptive stimulation of LUT. Am J Physiol 265:R326–R333

    CAS  PubMed  Google Scholar 

  • Blok BF (2002) Central pathways controlling micturition and urinary continence. Urology 59:13–17

    Article  PubMed  Google Scholar 

  • Blok BF, Holstege G (1994) Direct projections from the periaqueductal gray to the pontine micturition center (M-region). An anterograde and retrograde tracing study in the cat. Neurosci Lett 166:93–96

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, Holstege G (1997) Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat. Neurosci Lett 222:195–198

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, Holstege G (1998) The central nervous system control of micturition in cats and humans. Behav Brain Res 92:119–125

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, De Weerd H, Holstege G (1995) Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M-region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. J Comp Neurol 359:300–309

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, Sturms LM, Holstege G (1997a) A PET study on cortical and subcortical control of pelvic floor musculature in women. J Comp Neurol 389:535–544

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, de Weerd H, Holstege G (1997b) The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett 233:109–112

    Article  CAS  PubMed  Google Scholar 

  • Blok BF, Willemsen AT, Holstege G (1997c) A PET study on brain control of micturition in humans. Brain 120:111–121

    Article  PubMed  Google Scholar 

  • Blok BF, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121:2033–2042

    Article  PubMed  Google Scholar 

  • Brant-Zawadzki M, Fein G, Van Dyke C et al (1985) MR imaging of the aging brain: patchy white-matter lesions and dementia. AJNR Am J Neuroradiol 6:675–682

    CAS  PubMed  Google Scholar 

  • Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  CAS  PubMed  Google Scholar 

  • Cruz F (2004) Mechanisms involved in new therapies for overactive bladder. Urology 63:65–73

    Article  PubMed  Google Scholar 

  • Danuser H, Thor KB (1995) Inhibition of central sympathetic and somatic outflow to the lower urinary tract of the cat by the alpha 1 adrenergic receptor antagonist prazosin. J Urol 153:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • de Groat WC (1995) Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia 33:493–505

    PubMed  Google Scholar 

  • de Groat WC (1998) Anatomy of the central neural pathways controlling the lower urinary tract. Eur Urol 34(Suppl 1):2–5

    Article  PubMed  Google Scholar 

  • de Groat WC (2006) Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol 147(Suppl 2):S25–40

    Article  PubMed  CAS  Google Scholar 

  • de Groat WC, Lalley PM (1972) Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres. J Physiol 226:289–309

    PubMed  Google Scholar 

  • de Groat WC, Saum WR (1976) Synaptic transmission in parasympathetic ganglia in the urinary bladder of the cat. J Physiol 256:137–158

    Google Scholar 

  • de Groat WC, Theobald RJ (1976) Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol 259:223–237

    PubMed  Google Scholar 

  • de Groat WC, Yoshimura N (2001) Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol 41:691–721

    Article  PubMed  Google Scholar 

  • de Groat WC, Kawatani M, Hisamitsu T et al (1983) The role of neuropeptides in the sacral autonomic reflex pathways of the cat. J Auton Nerv Syst 7:339–350

    Article  PubMed  Google Scholar 

  • de Groat WC, Kawatani M, Hisamitsu T et al (1990) Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J Auton Nerv Syst 30(Suppl):S71–7

    PubMed  Google Scholar 

  • de Groat WC, Araki I, Vizzard MA et al (1998) Developmental and injury induced plasticity in the micturition reflex pathway. Behav Brain Res 92:127–140

    Article  PubMed  Google Scholar 

  • de Groat WC, Yoshiyama M, Ramage AG et al (1999) Modulation of voiding and storage reflexes by activation of alpha1-adrenoceptors. Eur Urol 36(Suppl 1):68–73

    Article  PubMed  Google Scholar 

  • Duffau H, Capelle L (2005) Incontinence after brain glioma surgery: new insights into the cortical control of micturition and continence. Case report. J Neurosurg 102:148–151

    Article  PubMed  Google Scholar 

  • Fedirchuk B, Song L, Downie JW et al (1992) Spinal distribution of extracellular field potentials generated by electrical stimulation of pudendal and perineal afferents in the cat. Exp Brain Res 89:517–520

    CAS  PubMed  Google Scholar 

  • Floyd K, Hick VE, Morrison JF (1976) Mechanosensitive afferent units in the hypogastric nerve of the cat. J Physiol 259:457–471

    CAS  PubMed  Google Scholar 

  • Floyd K, Hick VE, Morrison JF (1982) The influence of visceral mechanoreceptors on sympathetic efferent discharge in the cat. J Physiol 323:65–75

    CAS  PubMed  Google Scholar 

  • Fowler CJ (2002) Bladder afferents and their role in the overactive bladder. Urology 59:37–42

    Article  PubMed  Google Scholar 

  • Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9:453–466

    Article  CAS  PubMed  Google Scholar 

  • Fraser MO, Chancellor MB (2003) Neural control of the urethra and development of pharmacotherapy for stress urinary incontinence. BJU Int 91:743–748

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi K, Fukutake T, Nishino H et al (2005) Urinary retention caused by a small cortical infarction. J Neurol Neurosurg Psychiatry 76:457–458

    Article  CAS  PubMed  Google Scholar 

  • Galeano C, Jubelin B, Germain L et al (1986) Micturitional reflexes in chronic spinalized cats: the underactive detrusor and detrusor-sphincter dyssynergia. Neurourol Urodyn 5:45–63

    Article  Google Scholar 

  • Giuliano F, Facchinetti P, Bernabe J et al (1997) Evidence of sympathetic fibers in the male rat pelvic nerve by gross anatomy, retrograde labeling and high resolution autoradiographic study. Int J Impot Res 9:179–185

    Article  CAS  PubMed  Google Scholar 

  • Gjone R (1966) Excitatory and inhibitory bladder responses to stimulation of ‘limbic’, diencephalic and mesencephalic structures in the cat. Acta Physiol Scand 66:91–102

    Article  CAS  PubMed  Google Scholar 

  • Gjone R, Setekleiv J (1963) Excitatory and inhibitory bladder responses to stimulation of the cerebral cortex in the cat. Acta Physiol Scand 59:337–348

    Article  CAS  PubMed  Google Scholar 

  • Griffiths D (1998) Clinical studies of cerebral and urinary tract function in elderly people with urinary incontinence. Behav Brain Res 92:151–155

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DJ (2002) The pontine micturition centres. Scand J Urol Nephrol Suppl 210:21–26

    Article  PubMed  Google Scholar 

  • Griffiths D, Tadic SD (2008) Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn 27:466–474

    Article  PubMed  Google Scholar 

  • Griffiths D, Holstege G, Dalm E et al (1990) Control and coordination of bladder and urethral function in the brainstem of the cat. Neurourol Urodyn 9:63–82

    Article  Google Scholar 

  • Griffiths D, Derbyshire S, Stenger A et al (2005) Brain control of normal and overactive bladder. J Urol 174:1862–1867

    Article  PubMed  Google Scholar 

  • Gustafson KJ, Creasey GH, Grill WM (2004) A urethral afferent mediated excitatory bladder reflex exists in humans. Neurosci Lett 360:9–12

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1998) The emotional motor system in relation to the supraspinal control of micturition and mating behavior. Behav Brain Res 92:103–109

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (2005) Micturition and the soul. J Comp Neurol 493:15–20

    Article  PubMed  Google Scholar 

  • Holstege G, Mouton LJ (2003) Central nervous system control of micturition. Int Rev Neurobiol 56:123–145

    Article  PubMed  Google Scholar 

  • Holstege G, Tan J (1987) Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain 110(Pt 5):1323–1344

    Article  PubMed  Google Scholar 

  • Ishizuka O, Mattiasson A, Andersson KE (1996a) Role of spinal and peripheral alpha 2 adrenoceptors in micturition in normal conscious rats. J Urol 156:1853–1857

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka O, Persson K, Mattiasson A et al (1996b) Micturition in conscious rats with and without bladder outlet obstruction: role of spinal alpha 1-adrenoceptors. Br J Pharmacol 117:962–966

    CAS  PubMed  Google Scholar 

  • Kavia RB, Dasgupta R, Fowler CJ (2005) Functional imaging and the central control of the bladder. J Comp Neurol 493:27–32

    Article  PubMed  Google Scholar 

  • Keast JR, Kawatani M, De Groat WC (1990) Sympathetic modulation of cholinergic transmission in cat vesical ganglia is mediated by alpha 1- and alpha 2-adrenoceptors. Am J Physiol 258:R44–50

    CAS  PubMed  Google Scholar 

  • Klop EM, Mouton LJ, Kuipers R et al (2005) Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. Eur J Neurosci 21:2159–2166

    Article  PubMed  Google Scholar 

  • Komiyama A, Kubota A, Hidai H (1998) Urinary retention associated with a unilateral lesion in the dorsolateral tegmentum of the rostral pons. J Neurol Neurosurg Psychiatry 65:953–954

    Article  CAS  PubMed  Google Scholar 

  • Kruse MN, Noto H, Roppolo JR et al (1990) Pontine control of the urinary bladder and external urethral sphincter in the rat. Brain Res 532:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kruse MN, Belton AL, de Groat WC (1993) Changes in bladder and external urethral sphincter function after spinal cord injury in the rat. Am J Physiol 264:R1157–63

    CAS  PubMed  Google Scholar 

  • Kuchel GA, Moscufo N, Guttmann CR et al (2009) Localization of brain white matter hyperintensities and urinary incontinence in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 64:902–909

    PubMed  Google Scholar 

  • Kuo DC, Hisamitsu T, de Groat WC (1984) A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol 226:76–86

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Dicarlo SE, Collins HL et al (2005) Enkephalin-immunoreactive interneurons extensively innervate sympathetic preganglionic neurons regulating the pelvic viscera. J Comp Neurol 488:278–289

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Martin CL, Fenwick NM et al (2007) VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord. J Comp Neurol 503:741–767

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Giachetti A et al (1990) The effect of MK-801 on the micturition reflex in anesthetized rats. Eur J Pharmacol 181:105–109

    Article  CAS  PubMed  Google Scholar 

  • Mallory BS, Roppolo JR, de Groat WC (1991) Pharmacological modulation of the pontine micturition center. Brain Res 546:310–320

    Article  CAS  PubMed  Google Scholar 

  • Marson L (1997) Identification of central nervous system neurons that innervate the bladder body, bladder base, or external urethral sphincter of female rats: a transneuronal tracing study using pseudorabies virus. J Comp Neurol 389:584–602

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto G, Hisamitsu T, de Groat WC (1995) Role of glutamate and NMDA receptors in the descending limb of the spinobulbospinal micturition reflex pathway of the rat. Neurosci Lett 183:58–61

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Hanai T, Yoshioka N et al (2006) Medial prefrontal cortex lesions inhibit reflex micturition in anethetized rats. Neurosci Res 54:66–70

    Article  PubMed  Google Scholar 

  • Matsuura S, Kakizaki H, Mitsui T et al (2002) Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J Urol 168:2035–2039

    Article  PubMed  Google Scholar 

  • McMahon SB, Morrison JF (1982) Two group of spinal interneurones that respond to stimulation of the abdominal viscera of the cat. J Physiol 322:21–34

    CAS  PubMed  Google Scholar 

  • McMahon SB, Morrison JF, Spillane K (1982) An electrophysiological study of somatic and visceral convergence in the reflex control of the external sphincters. J Physiol 328:379–387

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Musil SY, Olson CR (1988) Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J Comp Neurol 272:203–218

    Article  CAS  PubMed  Google Scholar 

  • Nadelhaft I, Vera PL (1991) Neurons labelled after the application of tracer to the distal stump of the transected hypogastric nerve in the rat. J Auton Nerv Syst 36:87–96

    Article  CAS  PubMed  Google Scholar 

  • Nadelhaft I, Vera PL, Card JP et al (1992) Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder. Neurosci Lett 143:271–274

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yoshimura M, Shinnick-Gallagher P et al (1984) alpha 2 and alpha 1-Adrenoceptors mediate opposing actions on parasympathetic neurons. Brain Res 323:349–353

    Article  CAS  PubMed  Google Scholar 

  • Noto H, Roppolo JR, de Groat WC et al (1991) Opioid modulation of the micturition reflex at the level of the pontine micturition center. Urol Int 47(Suppl 1):19–22

    Article  PubMed  Google Scholar 

  • Nour S, Svarer C, Kristensen JK et al (2000) Cerebral activation during micturition in normal men. Brain 123:781–789

    Article  PubMed  Google Scholar 

  • Nyo MM (1969) Innervation of the bladder and urethra. J Anat 105:210

    CAS  PubMed  Google Scholar 

  • Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659

    CAS  PubMed  Google Scholar 

  • Sakakibara R, Hattori T, Uchiyama T et al (1999) Urinary function in elderly people with and without leukoaraiosis: relation to cognitive and gait function. J Neurol Neurosurg Psychiatry 67:658–660

    Article  CAS  PubMed  Google Scholar 

  • Schondorf R, Laskey W, Polosa C (1983) Upper thoracic sympathetic neuron responses to input from urinary bladder afferents. Am J Physiol 245:R311–R320

    CAS  PubMed  Google Scholar 

  • Sengupta JN, Gebhart GF (1994) Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 72:2420–2430

    CAS  PubMed  Google Scholar 

  • Shefchyk SJ, Buss RR (1998) Urethral pudendal afferent-evoked bladder and sphincter reflexes in decerebrate and acute spinal cats. Neurosci Lett 244:137–140

    Article  CAS  PubMed  Google Scholar 

  • Shefchyk SJ, Espey MJ, Carr P et al (1998) Evidence for a strychnine-sensitive mechanism and glycine receptors involved in the control of urethral sphincter activity during micturition in the cat. Exp Brain Res 119:297–306

    Article  CAS  PubMed  Google Scholar 

  • Sie JA, Blok BF, de Weerd H et al (2001) Ultrastructural evidence for direct projections from the pontine micturition center to glycine-immunoreactive neurons in the sacral dorsal gray commissure in the cat. J Comp Neurol 429:631–637

    Article  CAS  PubMed  Google Scholar 

  • Steers WD, Meythaler JM, Haworth C et al (1992) Effects of acute bolus and chronic continuous intrathecal baclofen on genitourinary dysfunction due to spinal cord pathology. J Urol 148:1849–1855

    CAS  PubMed  Google Scholar 

  • Sugaya K, de Groat WC (1994) Effects of MK-801 and CNQX, glutamate receptor antagonists, on bladder activity in neonatal rats. Brain Res 640:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sugaya K, Matsuyama K, Takakusaki K et al (1987) Electrical and chemical stimulations of the pontine micturition center. Neurosci Lett 80:197–201

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Wang J, Wang X et al (2007) Bladder inhibition or voiding induced by pudendal nerve stimulation in chronic spinal cord injured cats. Neurourol Urodyn 26:570–577

    Article  PubMed  Google Scholar 

  • Tai C, Shen B, Wang J et al (2008) Inhibitory and excitatory perigenital-to-bladder spinal reflexes in the cat. Am J Physiol Renal Physiol 294:F591–602

    Article  CAS  PubMed  Google Scholar 

  • Thor KB, Morgan C, Nadelhaft I et al (1989) Organization of afferent and efferent pathways in the pudendal nerve of the female cat. J Comp Neurol 288:263–279

    Article  CAS  PubMed  Google Scholar 

  • Vanderhorst VG, Holstege G (1997) Nucleus retroambiguus projections to lumbosacral motoneuronal cell groups in the male cat. J Comp Neurol 382:77–88

    Article  CAS  PubMed  Google Scholar 

  • Vanderhorst VG, Mouton LJ, Blok BF et al (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385

    Article  CAS  PubMed  Google Scholar 

  • Vaughan CW (1992) Hypogastric nerve section reveals a role for both afferent and efferent fibres in the feline continence process. J Auton Nerv Syst 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Weaver FM, Follett K, Stern M et al (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73

    Article  CAS  PubMed  Google Scholar 

  • Yoo PB, Woock JP, Grill WM (2008) Bladder activation by selective stimulation of pudendal nerve afferents in the cat. Exp Neurol 212:218–225

    Article  PubMed  Google Scholar 

  • Yoshimura N (1999) Bladder afferent pathway and spinal cord injury: possible mechanisms inducing hyperreflexia of the urinary bladder. Prog Neurobiol 57:583–606

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, de Groat WC (1997) Neural control of the lower urinary tract. Int J Urol 4:111–125

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, Sasa M, Ohno Y et al (1988) Contraction of urinary bladder by central norepine-phrine originating in the locus coeruleus. J Urol 139:423–427

    CAS  PubMed  Google Scholar 

  • Yoshimura N, Sasa M, Yoshida O et al (1990a) Mediation of micturition reflex by central norepinephrine from the locus coeruleus in the cat. J Urol 143:840–843

    CAS  PubMed  Google Scholar 

  • Yoshimura N, Sasa M, Yoshida O et al (1990b) Alpha 1-adrenergic receptor-mediated excitation from the locus coeruleus of the sacral parasympathetic preganglionic neuron. Life Sci 47:789–797

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, Bennett NE, Hayashi Y et al (2006) Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. J Neurosci 26:10847–10855

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama M, Roppolo JR, de Groat WC (1993a) Effects of MK-801 on the micturition reflex in the rat–possible sites of action. J Pharmacol Exp Ther 265:844–850

    CAS  PubMed  Google Scholar 

  • Yoshiyama M, Roppolo JR, Thor KB et al (1993b) Effects of LY274614, a competitive NMDA receptor antagonist, on the micturition reflex in the urethane-anaesthetized rat. Br J Pharmacol 110:77–86

    CAS  PubMed  Google Scholar 

  • Yoshiyama M, Roppolo JR, de Groat WC (1994) Interactions between glutamatergic and monoaminergic systems controlling the micturition reflex in the urethane-anesthetized rat. Brain Res 639:300–308

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama M, Roppolo JR, De Groat WC (1995a) Interactions between NMDA and AMPA/kainate receptors in the control of micturition in the rat. Eur J Pharmacol 287:73–78

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama M, Roppolo JR, de Groat WC (1995b) Effects of GYKI 52466 and CNQX, AMPA/kainate receptor antagonists, on the micturition reflex in the rat. Brain Res 691:185–194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Beckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beckel, J.M., Holstege, G. (2011). Neurophysiology of the Lower Urinary Tract. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_8

Download citation

Publish with us

Policies and ethics