Skip to main content

The MicroArray Quality Control (MAQC) Project and Cross-Platform Analysis of Microarray Data

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

As a powerful tool for genome-wide gene expression analysis, DNA microarray technology is widely used in biomedical research. One important application of microarrays is to identify differentially expressed genes (DEGs) between two distinct biological conditions, e.g. disease versus normal or treatment versus control, so that the underlying molecular mechanism differentiating the two conditions maybe revealed. Mechanistic interpretation of microarray results requires the identification of reproducible and reliable lists of DEGs, because irreproducible lists of DEGs may lead to different biological conclusions. Many vendors are providing microarray platforms of different characteristics for gene expression analysis, and the widely publicized apparent lack of intra- and cross-platform concordance in DEGs from microarray analysis of the same sets of study samples has been of great concerns to the scientific community and regulatory agencies like the US Food and Drug Administration (FDA). In this chapter, we describe the study design of and the main findings from the FDA-led MicroArray Quality Control (MAQC) project that aims to objectively assess the performance of different microarray platforms and the advantages and limitations of various competing statistical methods in identifying DEGs from microarray data. Using large data sets generated on two human reference RNA samples established by the MAQC project, we show that the levels of concordance in inter-laboratory and cross-platform comparisons are generally high. Furthermore, the levels of concordance largely depend on the statistical criteria used for ranking and selecting DEGs, irrespective of the chosen platforms or test sites. Importantly, a straightforward method combining fold-change ranking with a non-stringent P-value cutoff produces more reproducible lists of DEGs than those by t-test P-value ranking. Similar conclusions are reached when microarray data sets from a rat toxicogenomics study are analyzed. The availability of the MAQC reference RNA samples and the large reference data sets provides a unique resource for the gene expression community to reach consensus on the “best practices” for the generation, analysis, and applications of microarray data in drug development and personalized medicine.

The views presented in this article do not necessarily reflect those of the US Food and Drug Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, D. B., et al. (2006). Microarray data analysis: From disarray to consolidation and consensus. Native Reviews. Genetics, 7, 55–65.

    Article  Google Scholar 

  2. Canales, R. D., et al. (2006). Evaluation of dna microarray results with quantitative gene expression platforms. Nature Biotechnology, 24, 1115–1122.

    Article  Google Scholar 

  3. Chen, J. J., et al. (2007). Reproducibility of microarray data: A further analysis of microarray quality control (MAQC) data. BMC Bioinformatics, 8, 412.

    Article  Google Scholar 

  4. Chen, L., et al. (2006). Mutations induced by carcinogenic doses of aristolochic acid in kidney of Big Blue transgenic rats. Toxicology Letters, 165, 250–256.

    Article  Google Scholar 

  5. Ein-Dor, L., et al. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 5923–5928.

    Article  Google Scholar 

  6. Fodor, S. P., et al. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773.

    Article  Google Scholar 

  7. Frantz, S. (2005). An array of problems. Nature Reviews. Drug Discovery, 4, 362–363.

    Article  Google Scholar 

  8. Frueh, F. W. (2006). Impact of microarray data quality on genomic data submissions to the fda. Nature Biotechnology, 24, 1105–1107.

    Article  Google Scholar 

  9. Geiss, G. K., et al. (2008). Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology, 26, 317–325.

    Article  Google Scholar 

  10. Gunderson, K. L., et al. (2004). Decoding randomly ordered dna arrays. Genome Research, 14, 870–877.

    Article  Google Scholar 

  11. Guo, L., et al. (2006). Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nature Biotechnology, 24, 1162–1169.

    Article  Google Scholar 

  12. Hoffman, E. (2004). Expression profiling–best practices for data generation and interpretation in clinical trials. Native Reviews. Genetics, 5, 229–237.

    Article  Google Scholar 

  13. Hughes, T. R., et al. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19, 342–347.

    Article  Google Scholar 

  14. Ioannidis, J. P. (2005). Microarrays and molecular research: Noise discovery? The Lancet, 365, 454–455.

    Google Scholar 

  15. Irizarry, R. A., et al. (2005). Multiple-laboratory comparison of microarray platforms. Nature Methods, 3, 345–350.

    Article  Google Scholar 

  16. Irizarry, R. A., et al. (2006). Comparison of Affymetrix GeneChip expression measures. Bioinformatics, 22, 789–794.

    Article  Google Scholar 

  17. Ivanova, N. B., et al. (2002). A stem cell molecular signature. Science, 298, 601–604.

    Article  Google Scholar 

  18. Kadota, K., et al. (2009). Ranking differentially expressed genes from affymetrix gene expression data: Methods with reproducibility, sensitivity, and specificity. Algorithms for Molecular Biology, 4, 7.

    Article  Google Scholar 

  19. Klebanov, L., et al. (2007). Statistical methods and microarray data. Nature Biotechnology, 25, 25–26. Author reply 26–27.

    Google Scholar 

  20. Lockhart, D. J., et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14, 1675–1680.

    Article  Google Scholar 

  21. Marshall, E. (2004). Getting the noise out of gene arrays. Science, 306, 630–631.

    Article  Google Scholar 

  22. Mecham, B. H., et al. (2004). Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements. Nucleic Acids Research, 32, e74.

    Article  Google Scholar 

  23. Mei, N., et al. (2004). Differential mutagenicity of riddelliine in liver endothelial and parenchymal cells of transgenic big blue rats. Cancer Letters, 215, 151–158.

    Article  Google Scholar 

  24. Mei, N., et al. (2004). Mutations induced by the carcinogenic pyrrolizidine alkaloid riddelliine in the liver cII gene of transgenic big blue rats. Chemical Research in Toxicology, 17, 814–818.

    Article  Google Scholar 

  25. Mei, N., et al. (2005). Mutagenicity of comfrey (Symphytum Officinale) in rat liver. British Journal of Cancer, 92, 873–875.

    Article  Google Scholar 

  26. Michiels, S., et al. (2005). Prediction of cancer outcome with microarrays: A multiple random validation strategy. The Lancet, 365, 488–492.

    Article  Google Scholar 

  27. Miklos, G. L., & Maleszka, R. (2004). Microarray reality checks in the context of a complex disease. Nature Biotechnology, 22, 615–621.

    Article  Google Scholar 

  28. Miller, R. M., et al. (2004). Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra. Journal of Neuroscience, 24, 7445–7454.

    Article  Google Scholar 

  29. Ramakrishnan, R., et al. (2002). An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. Nucleic Acids Research, 30, e30.

    Article  Google Scholar 

  30. Ramalho-Santos, M., et al. (2002). ‘stemness’: Transcriptional profiling of embryonic and adult stem cells. Science, 298, 597–600.

    Article  Google Scholar 

  31. Sage, L. (2006). Do microarrays measure up? Analytical Chemistry, 78, 7358–7360.

    Article  Google Scholar 

  32. Schena, M., et al. (1995). Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science, 270, 467–470.

    Article  Google Scholar 

  33. Shi, L., et al. (2005). Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential. BMC Bioinformatics, 6(Suppl. 2), S12.

    Article  Google Scholar 

  34. Shi, L., et al. (2006). The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology, 24, 1151–1161.

    Article  Google Scholar 

  35. Shi, L., et al. (2007). Reply to Statistical methods and microarray data. Nature Biotechnology, 25, 26–27.

    Article  Google Scholar 

  36. Shi, L., et al. (2008). The current status of DNA microarrays. In Dill K., Liu R., & Grodzinski P. (Eds.), Microarrays: Preparation, microfluidics, detection methods, and biological applications (pp. 3–24). New York: Springer.

    Google Scholar 

  37. Shi, L., et al. (2008). The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics, 9(Suppl. 9), S10.

    Article  Google Scholar 

  38. Strauss, E. (2006). Arrays of hope. Cell, 127, 657–659.

    Article  Google Scholar 

  39. Su, Z., et al. (2009). Approaches and practical considerations for the analysis of toxicogenomics data. In Boverhof D.R., & Gollapudi B.B. (Eds.), Application of toxicogenomics in safety evaluation and risk assessment. Wiley, Chichester, West Sussex, UK.

    Google Scholar 

  40. Tan, P. K., et al. (2003). Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Research, 31, 247–276.

    Article  Google Scholar 

  41. Tusher, V. G., et al. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116–5121.

    Article  MATH  Google Scholar 

  42. Wang, E. T., et al. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476.

    Article  Google Scholar 

  43. Wang, Y., et al. (2006). Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics, 7, 59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leming Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wen, Z. et al. (2011). The MicroArray Quality Control (MAQC) Project and Cross-Platform Analysis of Microarray Data. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_9

Download citation

Publish with us

Policies and ethics