Skip to main content

From a Skeleton to a 3D Dinosaur

  • Chapter
  • First Online:
Computational Paleontology

Abstract

What dinosaurs really looked like is (and has always been) of great interest to most people, ever since the first skeletons were found. Reconstruction methods changed over time, and the better the understanding of the anatomy of these animals is, the better are usually the reconstructions. If the body mass it known, it is possible to derive many physiological data, which in turn improve our understanding of the way of life of these extinct animals. A simple method of estimating the weights of dinosaurs is by reconstructing the body surface area, calculating the body volume, and estimating the body mass for all body parts using specific weights based on analogies to extant animals. The developmental path of a reconstruction, from a mounted skeleton to a scientific realistic looking digital dinosaur, will be detailed in this chapter. Initially, a mounted skeleton is laser scanned to derive a non-scaled 3D point cloud. The second step is to reconstruct the external shape of the living animal, and thus the body surface area, using special software. This can be done by using non-uniform rational B-splines (NURBS). Next, the modeled dinosaur should be assessed for plausibility by physiologists, to check the fit of the interior organs. When necessary the model must be adapted. This can be an iterative process, and sometimes many changes must be realized to arrive at an acceptable result. This method results in editable and decidedly more accurate models of dinosaurs, which deliver significantly better data on physiological parameters than classic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, R. M. 1989. Mechanics of fossil vertebrates. Journal of the Geological Society, 146: 41–52.

    Google Scholar 

  • Alexander R.M. 1998. All-time giants: the largest animals and their problems. Palaeontology, 41: 1231–1245.

    Google Scholar 

  • Anderson, J.F., A. Hall-Martin and D.A. Russell. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, 207: 53–61.

    Google Scholar 

  • Bakker, R.T. 1986. The Dinosaur Heresis. William Morrow, New York. 448 pp.

    Google Scholar 

  • Bates, K.T., P.L. Manning, D. Hodgetts & W.I. Sellers. 2009. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling. PLoS ONE 4(2): e4532. doi:10.1371/journal.pone.0004532.

    Google Scholar 

  • Bellmann, A., T. Suthau, S. Stoinski, A. Friedrich, O. Hellwich & H.-C. Gunga. 2005. 3D-Modelling of Dinosaurs. In Grün and Kahmen (eds.). 7th Conference on Optical 3-D Measurement Techniques. Vienna.

    Google Scholar 

  • Boehler, W., M. Bordas & A. Marbs. 2003. Investigating laser scanner accuracy. International Committee for Architectural Photogrammetry Symposium. Turkey. October 2003

    Google Scholar 

  • Bonner, J.T. 2006. Why Size Matters: From Bacteria to Blue Whales. Princeton University Press. 176 pp.

    Google Scholar 

  • Calder, W. A. III. 1996. Size, Function and Life History. Dover, Mineola, NY.

    Google Scholar 

  • Clutton-Brock, T. H., S.D. Albon & P.H. Harvey. 1980. Antlers, body size and breeding group size in the Cervidae. Nature, 285: 565–566.

    Google Scholar 

  • Colbert, E. H. 1962. The weights of dinosaurs. American Museum Novitates, 2076: 1–16.

    Google Scholar 

  • Cope, E.D. (1877). On a gigantic saurian from the Dakota epoch of Colorado. Paleontological Bulletin, 25: 5–10.

    Google Scholar 

  • Dong, Z., Tang, Z., 1984. Note on a new mid-Jurassic sauropod (Datousaurus bashanensis ) from Sichuan Basin China. Vertebrata PalAsiatica, 15: 307–312.

    Google Scholar 

  • Dong Z., Zhou S. & Zhang Y. 1983. The dinosaurian remains from Sichuan Basin, China. Palaeontologica Sinica (Series C), 23: 1–145.

    Google Scholar 

  • Gatesy, S.M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology, 16(2):170–186.

    Google Scholar 

  • Gregory, W.K. 1905. The weight of the Brontosaurus. Science, New Series, 22: 572.

    Google Scholar 

  • Gunga, H.-C., K. Kirsch, F. Baartz, L. Röcker, W.-D. Heinrich, W. Lisowski, A. Wiedemann & J. Albertz. 1995. New data on dimensions of Brachiosaurus brancai and their physiological implications. Naturwissenschaften, 82: 190–192.

    Google Scholar 

  • Gunga, H.C., K. Kirsch, J. Rittweger, L. Röcker, A. Clarke, J. Albertz, A. Wiedermann, S. Mokry, T. Suthau, A. Wehr, D.H. Wolf & H.P. Schultze. 1999. Body size and body volume in two sauropods from the Upper Jurassic of Tendaguru (Tanzania). Mitteilungen des Museums für Naturkunde der Humboldt Universität zu Berlin. Geowissenschaftliche Reihe, 2: 91–102.

    Google Scholar 

  • Gunga, H.C., K. Kirsch, J. Rittweger, A. Clarke, J. Albertz, A. Wiedemann, T. Mokry, A. Wehr, D.H. Wolf & H.P. Schultze. 2002. Dimensions of Brachiosaurus brancai, Dicraeosaurus hansemanni and Diplodocus carnegii and their implications for gravitattional physiology. In J. Moravec, N. Takeda and P.K. Singal (eds.). Adaptation Biology and Medicine, 3: 156–169.

    Google Scholar 

  • Gunga, H.-C., T. Suthau, A. Bellmann, A. Friedrich, T. Schwanebeck, S. Stoinski, T. Trippel, K. Kirsch & Hellwich O. 2007. Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods. Naturwissenschaften, 94: 623–630.

    Google Scholar 

  • Gunga, H.-C., T. Suthau, A. Bellmann, S. Stoinski, A. Friedrich, T. Trippel, K. Kirsch & O. Hellwich. 2008. A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany). Fossil Record, 11: 33–38.

    Google Scholar 

  • He, X., Li, K., Cai, K. & Gao, Y. 1984. Omeisaurus tianfuensis—a new species of Omeisaurus from Dashanpu, Zigong, Sichuan. Journal of Chengdu College of Geology, 1984(suppl. 2): 13–32.

    Google Scholar 

  • Henderson, D.M. 1999. Estimating the masses and centers of masses of extinct animals by 3-D mathematical slicing. Paleobiology, 25, 88–106.

    Google Scholar 

  • Henderson, D.M. 2003. Tipsy punters: sauropod dinosaur pneumaticity, buoyancy and aquatic habits. Proceedings of the Royal Society London B (Suppl.), 271: 180–S183. doi:10.1098/rsbl.2003.0136

  • Henderson, D.M. 2006. Burly gaits: centers of mass, stability and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology, 26: 907–921.

    Google Scholar 

  • Hunt, G. & Roy, K. 2005. Climate change, body size evolution and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences, USA, 103:1347–1352.

    Google Scholar 

  • Janensch, W. 1914. Übersicht über die Wirbeltierfauna der Tendaguruschichten, nebst einer kurzen Charakterisierung der neu aufgeführten Arten von Sauropoden. Archiv für Biontologie, 3(1): 81–110.

    Google Scholar 

  • Janensch, W. 1938a. Vom Urweltriesen Brachiosaurus. Aus der Natur (Der Naturforscher), 15: 114–119.

    Google Scholar 

  • Janensch, W. 1938b. Gestalt und Größe von Brachiosaurus und anderen riesenwüchsigen Sauropoden. Der Biologe, 7: 130–134.

    Google Scholar 

  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. 503 pp. Stockholm (Salvius).

    Google Scholar 

  • Makarieva, A. M., V.G. Gorshkov & B.-L. Li. 2005. Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos, 111: 425–436.

    Google Scholar 

  • Mallison, H. 2010a. The digital Plateosaurus I: Body mass, mass distribution and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontologia Electronica 13, (2; 8A): 26p; http://palaeo-electronica.org/2010_2/198/index.html

  • Mallison, H. 2010b. The digital Plateosaurus II: An assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Palaeontologica Polonica 55(3): 433–458. doi:10.4202/app.2009.0075

  • Mallison, H. 2011. Defense capabilites of Kentrosaurus aethiopicus Hennig, 1915. Palaeontologia Electronica. in press.

    Google Scholar 

  • Marsh, O.C. 1877a. Notice of new dinosaurian reptiles from the Jurassic formation. American Journal of Science and Arts 14: 514–516.

    Google Scholar 

  • Marsh, O.C. 1877b. A new order of extinct Reptilia (Stegosauria) from the Jurassic of the Rocky Mountains. American Journal of Science 3(14): 513–514.

    Google Scholar 

  • Marsh O.C. 1878. Principal characters of American Jurassic dinosaurs. Part I. American Journal of Science, 3: 411–416.

    Google Scholar 

  • Mazzetta, G.V., Christiansen, P., & Fariña, R.A. 2004. Giants and bizarres: body size of some Southern South American Cretaceous dinosaurs. Historical Biology, 16: 71–83

    Google Scholar 

  • Meyer, H.v. 1837. Mitteilung an Prof. Bronn (Message to Prof. Bronn). Neues Jahrbuch für Geologie und Paläontologie, 316.

    Google Scholar 

  • Monbaron, M, DA Russell & P Taquet 1999: Atlasaurus imelakei n.g., n.sp., a brachiosaurid-like sauropod from the Middle Jurassic of Morocco. Comptes Rendus de l'Academie des Sciences ter. plan, 329: 519–526.

    Google Scholar 

  • Paul, G.S. 1987. The science and art of restoring the life appearance of dinosaurs and their relatives: a rigorous how-to guide. Pp. 5–49. In Czerkas, S.J. and Olson, E.C. (eds.), Dinosauria Past and Present Vol. II. University of Washington Press, Seattle.

    Google Scholar 

  • Paul, G.S. 1997. Dinosaur models: the good, the bad, and using them to estimate the mass of dinosaurs. Pp. 129–154. In Wolberg, D.L., Stump, E., and Rosenberg, G. (eds.), Dinofest International: Proceedings of a Symposium held at Arizona State University.

    Google Scholar 

  • Paul, G.S. 2000. Restoring the life appearance of dinosaurs. Pp. 78–106. In Paul, G.S. (ed.), The Scientific American Book of Dinosaurs. Byron Press and Scientific American, New York

    Google Scholar 

  • Perry, S. F. 2001. Functional morphology of the reptilian and avian respiratory systems and its implications for theropod dinosaurs. In New perspectives on the origin and early evolution of birds. J. Gauthier and L. F. Gall (eds.). Yale Peabody Museum, New Haven, Conn, pp. 429–441.

    Google Scholar 

  • Persons, W. 2009. Theropod tail muscle reconstruction and assessment of the locomotive contributions of the M. caudofemoralis. Journal of Vertebrate Paleontology, 29(Supplement to No.3):164A.

    Google Scholar 

  • Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, New York, 329 pp.

    Google Scholar 

  • Riggs, E.S. 1903. Brachiosaurus altithorax, the largest known dinosaur. American Journal of Science, 4(15): 299–306.

    Google Scholar 

  • Sander, P.M. 1992. The Norian Plateosaurus bonebeds of central Europe and their taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(3–4): 255–299.

    Google Scholar 

  • Sander, P.M., Christian, A., Clauss, M., Fechner, R., Gee, C., Griebeler, E.-M., Gunga, H.-C., Hummel, J., Mallison, H., Perry, S., Preuschoft, H., Rauhut, O., Remes, K., Tütken, T., Wings, O., and Witzel, U. 2010. Biology of the Sauropod Dinosaurs: The Evolution of Gigantism. Biology Letters, 68(1): 117–155; doi:10.1111/j.1469-185X.2010.00137.x

    Google Scholar 

  • Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge, 241 pp.

    Google Scholar 

  • Schmidt-Nielsen, K. 1997. Animal physiology: adaptation and environment. 5th ed. Cambridge University Press, Cambridge, ix + 607 pp.

    Google Scholar 

  • Schwarz, D. & G. Fritsch. 2006. Pneumatic structures in the cervical vertebrae of the Late Jurassic (Kimmeridgian-Tithonian) Tendaguru sauropods Brachiosaurus brancai and Dicraeosaurus. Eclogae Geologicae Helvetiae, 99: 65–78.

    Google Scholar 

  • Schwarz-Wings, D. 2009. Approach to the reconstruction of the thoracic epaxial musculature of sauropod dinosaurs. – Journal of Vertebrate Paleontology, 29(2): 517–534

    Google Scholar 

  • Schwarz-Wings, D., E. Frey, and C.A. Meyer. 2007. Pneumaticity and soft-tissue reconstructions in the neck of diplodocid and dicreaosaurid sauropods. Acta Palaeontologica Polonica, 52: 167–188.

    Google Scholar 

  • Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology 21, 51–60.

    Google Scholar 

  • Taylor, M.P., 2009. A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai (Janensch 1914). Journal of Vertebrate Paleontology, 29: 787–806.

    Google Scholar 

  • Therrien, F. & Henderson, D.M. 2007. My theropod is bigger than yours--- or not: Estimating body size from skull length in theropods. Jounral of Vertebrate Paleontology, 27:108–115

    Google Scholar 

  • Wedel, M.J. 2003a. Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology, 29: 243–255.

    Google Scholar 

  • Wedel, M.J. 2003b. The evolution of vertebral pneumaticity in sauropod dinosaurs. Journal of Vertebrate Paleontology, 23: 344–357.

    Google Scholar 

  • Wedel, M.J. 2005. Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates. In The Sauropods: Evolution and Paleobiology. Wilson, J.A., and Curry-Rogers, K. (eds.). University of California Press, Berkeley, pp. 201–228.

    Google Scholar 

  • Wiedemann, Albert, Tim Suthau & Jörg Albertz 1999. Photogrammetric Survey of Dinosaur Skeletons. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 2: 113–119.

    Google Scholar 

  • Young, C.C. 1941. A complete osteology of Lufengosaurus huenei Young (gen. et sp. nov.) from Lufeng, Yunnan, China. Palaeontologica Sinica, Series C, 7:1–53.

    Google Scholar 

  • Young, C.C., & Zhao, X.-J. 1972. Mamenchisaurus hochuanensis sp. nov. Institute of Vertebrate Paleontology and Paleoanthropology Monographs, A, 8:1–30.

    Google Scholar 

  • Zhang, Yihong; Li, kui; Zeng, Qinghua 1998. A new species of sauropod from the Late Jurassic of the Sichuan Basin (Mamenchisaurus jingyanensis sp. nov.). Journal of the Chengdu University of Technology, 25 (1): 61–68.

    Google Scholar 

Download references

Acknowledgements

I thank all the members of the research unit, especially Martin Sander (University of Bonn, Germany) and Oliver Rauhut (Bavarian State Collection for Paleontology and Geology, Munich, Germany), for their help in selecting the dinosaurs. Further thanks go to the staff of the institutions where we scanned the skeletons, especially for their warm response, patience, and support. In particular, I want to thank the following persons: Clara Stefen (Senckenberg Naturhistorische Sammlungen Dresden, Germany), Mogens Andersen and Per Christiansen (Zoological Museum of the University of Copenhagen, Denmark), Wolf-Dieter Heinrich and Heinrich Mallison (Museum für Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt-University Berlin, Berlin, Germany), Najat Aquesbi and Mohammed Rochdy (Ministere de l’Energie et des Mines, Rabat, Morocco) and Hans-Jakob “Kirby” Siber and his team (Sauriermuseum Aathal, Switzerland). I also thank the Beijing Museum of Natural History and the Zigong Dinosaur Museum for the excellent cooperation and the very special opportunity to scan in China. The German Research Foundation (DFG) funded this research as part of Research Group 533, to which this is contribution # 106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stoinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stoinski, S. (2011). From a Skeleton to a 3D Dinosaur. In: Elewa, A. (eds) Computational Paleontology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16271-8_8

Download citation

Publish with us

Policies and ethics