Skip to main content

High-Throughput Prostate Cancer Gland Detection, Segmentation, and Classification from Digitized Needle Core Biopsies

  • Conference paper
Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention (Prostate Cancer Imaging 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6367))

Included in the following conference series:

Abstract

We present a high-throughput computer-aided system for the segmentation and classification of glands in high resolution digitized images of needle core biopsy samples of the prostate. It will allow for rapid and accurate identification of suspicious regions on these samples. The system includes the following three modules: 1) a hierarchical frequency weighted mean shift normalized cut (HNCut) for initial detection of glands; 2) a geodesic active contour (GAC) model for gland segmentation; and 3) a diffeomorphic based similarity (DBS) feature extraction for classification of glands as benign or cancerous. HNCut is a minimally supervised color based detection scheme that combines the frequency weighted mean shift and normalized cuts algorithms to detect the lumen region of candidate glands. A GAC model, initialized using the results of HNCut, uses a color gradient based edge detection function for accurate gland segmentation. Lastly, DBS features are a set of morphometric features derived from the nonlinear dimensionality reduction of a dissimilarity metric between shape models. The system integrates these modules to enable the rapid detection, segmentation, and classification of glands on prostate biopsy images. Across 23 H & E stained prostate studies of whole-slides, 105 regions of interests (ROIs) were selected for the evaluation of segmentation and classification. The segmentation results were evaluated on 10 ROIs and compared to manual segmentation in terms of mean distance (2.6 ±0.2 pixels), overlap (62±0.07%), sensitivity (85±0.01%), specificity (94±0.003%) and positive predictive value (68±0.08%). Over 105 ROIs, the classification accuracy for glands automatically segmented was (82.5 ±9.10%) while the accuracy for glands manually segmented was (82.89 ±3.97%); no statistically significant differences were identified between the classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madabhushi, A.: Digital pathology image analysis: opportunities and challenges. Imaging in Medicine 1(1), 7–10 (2009)

    Article  Google Scholar 

  2. Gleason, D.F.: Histologic grading of prostate cancer: A perspective. Human Pathology 23(3), 273–279 (1992); The Pathobiology of Prostate Cancer-Part 1

    Article  Google Scholar 

  3. Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: A boosted bayesian multi-resolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Transactions on Biomedical Engineering (in Press)

    Google Scholar 

  4. Monaco, J.P., Tomaszewski, J.E., Feldman, M.D., Hagemann, I., Moradi, M., Mousavi, P., Boag, A., Davidson, C., Abolmaesumi, P., Madabhushi, A.: High-throughput detection of prostate cancer in histological sections using probabilistic pairwise markov models. Medical Image Analysis 14, 617–629 (2010)

    Article  Google Scholar 

  5. Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., Zoroofi, R.: An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry Part B (Clinical Cytometry) 72(B), 227–240 (2007)

    Article  Google Scholar 

  6. Tabesh, A., Teverovskiy, M., Ho-Yuen, P., Kumar, V.P., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Transactions on Medical Imaging 26(10), 1366–1378 (2007)

    Article  Google Scholar 

  7. Sparks, R., Madabhushi, A.: Novel morphometric based classification via diffeomorphic based shape representation using manifold learning. In: MICCAI 2010 (2010) (in press)

    Google Scholar 

  8. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  9. Janowczyk, A., Chandran, S., Singh, R., Sasaroli, D., Coukos, G., Feldman, M.D., Madabhushi, A.: Hierarchical normalized cuts: Unsupervised segmentation of vascular biomarkers from ovarian cancer tissue microarrays. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 230–238. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  12. Agner, S., Soman, S., Libfeld, E., McDonald, M., Thomas, K., Englander, S., Rosen, M., Chin, D., Nosher, J., Madabhushi, A.: Textural kinetics: A novel dynamic contrast enhanced (DCE)- MRI feature for breast lesion classification. Journal of Digital Imaging (in press)

    Google Scholar 

  13. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Underst. 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  14. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: A new variational formulation. In: CVPR, vol. 1, pp. 430–436 (2005)

    Google Scholar 

  15. Sapiro, G.: Color snakes. Computer Vision and Image Understanding 68(2), 247–253 (1997)

    Article  MathSciNet  Google Scholar 

  16. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 367–380. MIT Press, Cambridge (1967)

    Google Scholar 

  17. Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic point matching. In: Handbook of Mathematical Models in Computer Vision, pp. 205–219. Springer, US (2005)

    Google Scholar 

  18. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, J., Sparks, R., Janowczyk, A., Tomaszewski, J.E., Feldman, M.D., Madabhushi, A. (2010). High-Throughput Prostate Cancer Gland Detection, Segmentation, and Classification from Digitized Needle Core Biopsies. In: Madabhushi, A., Dowling, J., Yan, P., Fenster, A., Abolmaesumi, P., Hata, N. (eds) Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention. Prostate Cancer Imaging 2010. Lecture Notes in Computer Science, vol 6367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15989-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15989-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15988-6

  • Online ISBN: 978-3-642-15989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics