Skip to main content

Tracking Uncertainty in a Spatially Explicit Susceptible-Infected Epidemic Model

  • Conference paper
Cellular Automata (ACRI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Included in the following conference series:

Abstract

In this paper we conceive an interval-valued continuous cellular automaton for describing the spatio-temporal dynamics of an epidemic, in which the magnitude of the initial outbreak and/or the epidemic properties are only imprecisely known. In contrast to well-establish-ed approaches that rely on probability distributions for keeping track of the uncertainty in spatio-temporal models, we resort to an interval representation of uncertainty. Such an approach lowers the amount of computing power that is needed to run model simulations, and reduces the need for data that are indispensable for constructing the probability distributions upon which other paradigms are based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baetens, J., De Baets, B.: Cellular automata on irregular tessellations. Chaos, Solitons Fractals (2010) (submitted)

    Google Scholar 

  2. Baetens, J., De Baets, B.: A generalized coupled-map lattice to model biological phenomena. Mathematical Biology (2010)(submitted)

    Google Scholar 

  3. Baltzer, H., Braun, P., Köhler, W.: Cellular automata models for vegetation dynamics. Ecol. Modell. 107, 113–125 (1998)

    Article  Google Scholar 

  4. Beale, L., Abellan, J., Hodgson, S., Jarup, L.: Methodologic issues and approaches to spatial epidemiology. Environ. Health Perspect. 116, 1105–1110 (2008)

    Article  Google Scholar 

  5. Dewdney, A.: Sharks and fish wage an ecological war on the toroidal planet. Sci. Am. 251, 14–22 (1984)

    Article  Google Scholar 

  6. Doran, R., Laffan, S.: Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model. Prev. Vet. Med. 70, 133–152 (2005)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility Theory: an Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  8. Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game ‘Life’. Scientific American 223, 120–123 (1971)

    Article  Google Scholar 

  9. Kaneko, K. (ed.): Theory and Applications of Coupled Map Lattices. John Wiley & Sons Ltd., Chichester (1993)

    MATH  Google Scholar 

  10. Kier, L., Seybold, P., Cheng, C.: Modelling Chemical Systems using Cellular Automata. Springer, Dordrecht (2005)

    Google Scholar 

  11. Lakshmikantham, V., Mohapatra, R.: Theory of fuzzy differential equations and inclusions. In: Agarwal, R., O’Regan, D. (eds.). Series in Mathematical Analysis and Applications, vol. 6. Taylor & Francis, New York (2003)

    Google Scholar 

  12. Lipsitch, M., Riley, S., Cauchemez, S., Ghani, A.C., Ferguson, N.M.: Ferguson: Managing and reducing uncertainty in an emerging influenza pandemic. N. Engl. J. Med. 361, 112–115 (2009)

    Article  Google Scholar 

  13. Mallet, D., De Pillis, L.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)

    Article  MathSciNet  Google Scholar 

  14. Milne, J., Fu, S.: Epidemic modelling using cellular automata. In: Proc. ACAL 2003, Canberra, pp. 43–57 (December 2003)

    Google Scholar 

  15. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  16. Murray, J. (ed.): Mathematical Biology: I. An Introduction, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  17. Murray, J. (ed.): Mathematical Biology: II. Spatial Models and Biomedical Applications, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  18. Nguyen, H.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oberguggenberger, M., Pittschmann, S.: Differential equations with fuzzy parameters. Math. Comput. Modell. Dyn. Syst. 5, 181–202 (1999)

    Article  MATH  Google Scholar 

  20. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  21. Picioreanu, C., van Loosdrecht, M., Heijnen, J.: Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. and Bioeng. 58, 101–116 (1998)

    Article  Google Scholar 

  22. Pizarro, G., Griffeath, D., Noguera, D.: Quantitative cellular automaton model for biofilms. J. Environ. Eng. 127, 782–789 (2001)

    Article  Google Scholar 

  23. Preziosi, L.: Cancer Modelling and Simulation. Chapman & Hall, Boca Raton (2003)

    Book  MATH  Google Scholar 

  24. Qi, A., Zheng, X., Du, C., An, B.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161, 1–12 (1993)

    Article  Google Scholar 

  25. Schiff, J.: Cellular Automata: A Discrete View of the World. John Wiley & Sons Ltd., Chichester (2008)

    MATH  Google Scholar 

  26. Ulam, S.: The monte carlo method. J. Am. Stat. Ass. 44, 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  27. von Neumann, J., Burks, A.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  28. White, S., del Rey, A., Sanchez, G.: Modeling epidemics using cellular automata. Appl. Math. Comput. 186, 193–202 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baetens, J.M., De Baets, B. (2010). Tracking Uncertainty in a Spatially Explicit Susceptible-Infected Epidemic Model. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics