Skip to main content

Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions

  • Chapter
  • First Online:
Mathematical Models in the Manufacturing of Glass

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2010))

  • 1239 Accesses

Abstract

With specific reference to the process of glass fibers drawing we review the models proposed to describe the various stages of the flow of molten glass from the furnace to the winding spool: the slow flow in the die, the jet formation under rapid cooling, the terminal fiber profile. In the course of our exposition we will present a general model for non-isothermal flows of mechanically incompressible but thermally expansible fluids (the basic model here assumed for glass), and the Oberbeck–Boussinesq limit is discussed. Both the modelling and the mathematical aspects will be illustrated in detail. An appendix is devoted to the question of stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  2. Bechtel, S.E., Forest, M.G., Rooney, F.J., Wang, Q.: Thermal expansion models of viscous fluids based on limits of free energy. Phys. Fluids 15, 2681–2693 (2003)

    Article  Google Scholar 

  3. Bechtel, S.E., Rooney, F.J., Forest, M.G: Internal constraint theories for the thermal expansion of viscous fluids. Int. J. Eng. Sci. 42, 43–64 (2004)

    Google Scholar 

  4. Beirao da Veiga, H.: An L p-Theory for the n − Dimensional, stationary, compressible Navier-Stokes Equations, and the Incompressible Limit for Compressible Limit for Compressible Fluids. The Equilibrium Solutions. Commun. Math. Phys. 109, 229–248 (1987)

    Google Scholar 

  5. Clopeau, T., Farina, A., Fasano, A., Mikelić, A. : Asymptotic equations for the terminal phase of glass fiber drawing and their analysis, accepted for publication in Nonlinear Analysis TMA: Real World Applications, 2009, http://dx.doi.org/10.1016/j.nonrwa.2008.09.017.

  6. Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  Google Scholar 

  7. Dewynne, J.N., Ockendon, J.R., Wilmott, P.: On a mathematical model for fibre tapering, SIAM J. Appl. Math. 49, 983–990 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diaz, J.I., Galiano, G.: Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion. Topol. Methods Nonlin. Anal. 11, 59–82 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Farina, A., Fasano, A., Mikelić, A.: On the equations governing the flow of mechanically incompressible, but thermally expansible, viscous fluids, M3AS : Math. Models Methods Appl. Sci. 18, 813–858 (2008)

    Article  MATH  Google Scholar 

  10. Feireisl, E., Novotny, A.: The low Mach number limit for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 186, 77–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallavotti, G.: Foundations of Fluid Dynamics. Springer, Berlin (2002)

    Google Scholar 

  12. Green, A.E., Naghdi, P.M., Trapp, J.A., Thermodynamics of a continuum with internal constraints. Int. J. Eng. Sci. 8, 891–908 (1970)

    Article  MATH  Google Scholar 

  13. Gupta, G., Schultz, W.W.: Non-isothermal flows of Newtonian slender glass fibers. Int. J. Non-Linear Mech. 33, 151–163 (1998)

    Article  MATH  Google Scholar 

  14. Hagen, T.: On the Effects of Spinline Cooling and Surface Tension in Fiber Spinnning, ZAMM Z. Angew. Math. Mech. 82, 545–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoff, D.: The zero Mach number limit of compressible flows. Comm. Math. Phys. 192, 543–554 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kagei, Y., Ružička, M., Thäter, G.: Natural Convection with Dissipative Heating. Commun. Math. Phys. 214, 287–313 (2000)

    Google Scholar 

  17. Kase, S., Matsuo, T.: Studies of melt spinning I. Fundamental Equations on the Dynamics of Melt Spinning, J. Polym. Sci. A 3, 2541–2554 (1965)

    Google Scholar 

  18. Kase, S., Matsuo, T.: Studies of melt spinning. II, Steady state and transient solutions of fundamental equations compared with experimental results. J. Polym. Sci. 11, 251–287 (1967)

    Google Scholar 

  19. Lions, P.L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline-steady state isothermal viscous flows. Ind. Engrg. Chem. Fundam. 8, 512–520 (1969)

    Article  Google Scholar 

  21. von der Ohe, R.: Simulation of glass fiber forming processes. Thesis PhD (2005) – AUC Imprint: ISBN: 8791200253. – Aalborg : Department of Production, Aalborg University (2005)

    Google Scholar 

  22. Rajagopal, K.R., Ružička, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math. Models Methods Appl. Sci. 6, 1157–1167 (1996)

    Google Scholar 

  23. Renardy, M.: Draw resonance revisited, SIAM J. Appl. Math. 66, 1261–1269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Renardy, M.: An existence theorem for a free surface flow problem with open boundaries. Commun. Partial Differ. Equ. 17, 1387–1405 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schlichting, H., Gersten, K.: Boundary-Layer Theory, 8th edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  26. Shelby, J.E.: Introduction to Glass Science and Technology, 2nd edn. RSCP Publishing, London (2005)

    Google Scholar 

  27. Temam, R.: Infinite-Dimensional Dynamical systems in Mechanics and Physics. Springer, NewYork (1988)

    Book  MATH  Google Scholar 

  28. Zeytounian, R.Kh.: Modélisation asymptotique en mécanique des fluides newtoniens. Springer, New York (1994)

    MATH  Google Scholar 

  29. Zeytounian, R.Kh.: The Bénard-Marangoni thermocapillary instability problem. Phys. Uspekhis 41, 241–267 (1998)

    Article  Google Scholar 

  30. Zeytounian, R.Kh.: Joseph Boussinesq and his approximation: A contemporary view. C.R. Mécanique 331, 575–586 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farina, A., Fasano, A., Mikelić, A. (2011). Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions. In: Fasano, A. (eds) Mathematical Models in the Manufacturing of Glass. Lecture Notes in Mathematics(), vol 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15967-1_4

Download citation

Publish with us

Policies and ethics