Skip to main content

Steady State and Evolving Solutions for the Wave Spectrum

  • Chapter
  • First Online:
Wave Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 825))

  • 2739 Accesses

Abstract

In this Chapter, steady state and evolving solutions of the wave kinetic equation are derived and analysed. They include the Rayleigh-Jeans thermodynamic spectra, Kolmogorov- 11Zakharov (KZ) spectra and other stationary power-law solutions. Wave Turbulence (WT) cascades associated with the KZ spectra are studied. Self-similar non-stationary spectra are considered with emphasis on significant differences arising in their evolution for the finite-capacity and the infinite-capacity systems. Anisotropic wave media are studied. The theory of locality and stability of the WT spectra is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peierls, R.: Annalen Physik 3, 1055 (1929)

    Article  ADS  Google Scholar 

  2. Connaughton, C., Nazarenko, S.: Warm cascades and anomalous scaling in a diffusion model of turbulence. Phys. Rev. Lett. 92(4), 044501 (2004)

    Article  ADS  Google Scholar 

  3. L’vov, V.S., Nazarenko, S.V., Rudenko, O.: Bottleneck crossover between classical and quantum superfluid turbulence. Phys. Rev. B 76, 024520 (2007)

    Article  ADS  Google Scholar 

  4. Zakharov, V.E.: Weak turbulence in media with decay spectrum. Zh. Priklad. Tech. Fiz. 4, 35–39 (1965) [J. Appl. Mech. Tech. Phys. 4, 22–24 (1965)]

    Google Scholar 

  5. Zakharov, V.E., Filonenko, N.N.: Energy spectrum for stochastic oscillations of a fluid surface. Dokl. Acad. Nauk SSSR 170, 1292–1295 (1966) (translation: Sov. Phys. Dokl. 11, 881–884 (1967))

    Google Scholar 

  6. Zakharov, V.E., Filonenko, N.N.: Weak turbulence of capillary waves. Zh. Prikl. Mekh. Tekh. Phys. 4(5), 62 (1967) (in Russian: J. Appl. Mech. Tech. Phys. 4, 506)

    Google Scholar 

  7. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence. Series in Nonlinear Dynamics. Springer (1992)

    Google Scholar 

  8. Pushkarev, A.N., Zakharov, V.E.: Turbulence of capillary waves—theory and numerical simulation. Phys. D 135(1–2), 98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frisch, U.: Presentation in “International Symposium on Turbulence”, Beijing, China, 21–25 Sept 2009

    Google Scholar 

  10. Eyink, G., Frisch, U.: Kraichnan. In: Davidson, P.A., Kaneda, Y., Moffatt, H.K., Sreenivasan, K.R. (eds.) Highlights in the History of Turbulence. CUP, Cambridge (2010)

    Google Scholar 

  11. Dyachenko, A., Newell, A.C., Pushkarev, A., Zakharov V.E.: Optical turbulence: weak turbulence, condensates and collapsing fragments in the nonlinear Schrodinger equation. Phys. D 57(1–2), 96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nazarenko, S.: Differential approximation for Kelvin-wave turbulence. JETP Lett. 83(5), 198–200 (2005) (arXiv: cond-mat/0511136)

    Article  ADS  Google Scholar 

  13. Boffetta, G., Celani, A., Dezzani, D., Laurie, J., Nazarenko, S.: Modeling kelvin wave cascades in superfluid helium. J. Low Temp. Phys. 156(3--6), 193--214 (2009)

    Article  ADS  Google Scholar 

  14. Lvov, V., Nazarenko, S.: Differential models for 2D turbulence, JETP Lett. 83(12), 635–639 (2006) (arXiv: nlin.CD/0605003)

    Google Scholar 

  15. Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A.: A weak turbulence theory for incompressible MHD. J. Plasma Phys. 63(5), 447–488 (2000)

    Article  ADS  Google Scholar 

  16. Semikoz, D.V., Tkachev, I.I.: Phys. Rev. Lett. 74, 3093 (1995)

    Google Scholar 

  17. Semikoz, D.V., Tkachev, I.I.: Phys. Rev. D 55, 489 (1997)

    Google Scholar 

  18. Sulem, C., Sulem, P.-L., Frisch, H.: Tracing complex singularities with spectral method. J. Comput. Phys. 50, 138–161 (1983)

    Google Scholar 

  19. Balk, A.M., Nazarenko, S.V.: On the physical realisability of anisotropic Kolmogorov spectra of weak turbulence. Sov. Phys. JETP 70, 1031 (1990)

    MathSciNet  Google Scholar 

  20. Balk, A.M., Zakharov, V.E.: Stability of weak turbulence: Kolmogorov spectra. In: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Vol. 1 (World Scientific Publishing Co., Singapore, 1988), pp. 359–376

    Google Scholar 

  21. Balk, A.M., Zakharov, V.E.: Stability of weakly turbulent Kolmogorov spectra. Dokl. Acad. Nauk SSSR 299(5), 1112–1115 (1988) [Sov. Phys. Dokl. 33(4), 270–272 (1988)]

    Google Scholar 

  22. Balk, A.M., Zakharov, V.E.: Stability of Kolmogorov spectra of weak turbulence. In: Integrability and Kinetic Equations for Solitons (Naukova Dumka, Kiev, 1990), pp. 417–472.

    Google Scholar 

  23. Balk, A.M., Zakharov, V.E.: Stability of weak-turbulent Kolmogorov spectra. Amer. Math. Soc. Transl. Ser. 2 182, 31–81 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nazarenko, S. (2011). Steady State and Evolving Solutions for the Wave Spectrum. In: Wave Turbulence. Lecture Notes in Physics, vol 825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15942-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15942-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15941-1

  • Online ISBN: 978-3-642-15942-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics