Skip to main content

Utilization of Multi-spectral Images in Photodynamic Diagnosis

  • Conference paper
Computer Vision and Graphics (ICCVG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6375))

Included in the following conference series:

Abstract

This paper introduces multi-spectral images for healthy and cancerous parts of human skin. It compares light spectrum calculated from those images with spectrum obtained from simulation. First the mathematical model of tissue and Monte Carlo algorithm of light propagation in turbid media is presented. This theory was then extended to imitate the fluorescence phenomenon, necessary for cancer recognition. Then the processing method of non-normalized multi-spectral images was described. Finally both results were compared to confirm that the assumed model is correct. Having all those information it will be possible to simulate such environment, which applied into reality, would make the cancer diagnosis much faster.

Supported by Ministry of Science and Higher Education grant R13 046 02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, P.T.: Skin Cancer in Skin of Color. Dermatology nursing 21(4), 170–206 (2009)

    Google Scholar 

  2. Yavari, N.: Optical spectroscopy for tissue diagnostics and treatment control. Doctoral Thesis, Department of Physics and Technology University of Bergen (2006)

    Google Scholar 

  3. Jacques, S.L.: Light Distributions from Point, Line and Plane Sources for Photochemical Reactions and Fluorescence in Turbid Biological Tissues. Photochemistry and Photobiology 67(1), 23–32 (1998)

    Article  Google Scholar 

  4. Long, R., McShane, M.J.: Modeling of Selective Photon Capture for Collection of Fluorescence Emitted from Dermally-Implanted Microparticle Sensors. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 21(4), pp. 2972–2975 (2007)

    Google Scholar 

  5. Zeng, H., MacAulay, C., McLean, D.I., Palcic, B.: Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation. Journal of Photochemistry and Photobiology B 38(4), 234–240 (1997)

    Article  Google Scholar 

  6. Sokolov, K., Follen, M., Richards-Kortum, R.: Optical spectroscopy for detection of neoplasia. Current Opinion in Chemical Biology 6(5), 651–658 (2002)

    Article  Google Scholar 

  7. Li, Y., Li, M., Xu, T.: Quantitative Time-Resolved Fluorescence Spectrum of the Cortical Sarcoma and the Adjacent Normal Tissue. Journal of fluorescence 17(6), 643–648 (2007)

    Article  Google Scholar 

  8. Perelman, L.T., Wu, J., Itzkan, I., Feld, M.S.: Photon Migration in Turbid Media Using Path Integrals. Physical Review Letters 72(9), 1341–1344 (1994)

    Article  Google Scholar 

  9. Wang, L., Jacques, S.L.: Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C. University of Texas M. D. Anderson Cancer Center (1992)

    Google Scholar 

  10. Pharr, M., Humphereys, G.: Physically based rendering. From theory to implementation. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zacher, A. (2010). Utilization of Multi-spectral Images in Photodynamic Diagnosis. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2010. Lecture Notes in Computer Science, vol 6375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15907-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15907-7_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15906-0

  • Online ISBN: 978-3-642-15907-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics