Skip to main content

Magnetic Ion–Carrier Interactions in Quantum Dots

  • Chapter
  • First Online:
Introduction to the Physics of Diluted Magnetic Semiconductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 144))

Abstract

In this theoretical chapter, cylindrically shaped quantum dots are the center of attention. It is shown that sp − d interaction does depend on exact position of the magnetic atoms in the dot and that the interaction strength changes when the dots are charged. Many body aspects of the carriers are, thus, of an importance for a discussion presented here. The dependence of sp − d interaction on location of Mn and on charge state of the dot is also shown to influence the indirect coupling between magnetic ions mediated by charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Gaj, R. Planel, G. Fishman, Solid State Comm. 29, 435 (1979)

    Google Scholar 

  2. R.R. Galazka, J. Kossut, Lecture Notes in Physics, vol. 132 (Springer, Berlinm 1980), p. 245

    Google Scholar 

  3. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  4. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)

    Google Scholar 

  5. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  6. P. Hawrylak, M. Korkusinski, in Topics in Applied Physics, vol. 90, ed. by P. Michler (Springer, Berlin, 2003), pp. 25–92 and references therein

    Google Scholar 

  7. T. Dietl, J. Spalek, Phys. Rev. Lett. 48, 355 (1982)

    Article  ADS  Google Scholar 

  8. P. Hawrylak, M. Grabowski, J. J. Quinn, Phys. Rev. B 44, 13082 (1991)

    Article  ADS  Google Scholar 

  9. H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994)

    Article  ADS  Google Scholar 

  10. L. Besombes, Y. Léger, L. Maingault, D. Ferrand, H. Mariette, J. Cibert, Phys. Rev. Lett. 93, 207403 (2004); Phys.Rev. B 71, 161307 (2005)

    Google Scholar 

  11. Y. Léger, L. Besombes, J. Fernàndez-Rossier, L. Maingault, H. Mariette, Phys. Rev. Lett. 97, 107401 (2006); Y. Léger, L. Besombes, L. Maingault, D. Ferrand, H. Mariette, Phys. Rev. Lett. 95, 047403 (2005)

    Google Scholar 

  12. P. Wojnar, J. Suffczyński, K. Kowalik, A. Golnik, G. Karczewski, J. Kossut, Phys. Rev. B 75, 155301 (2007)

    Article  ADS  Google Scholar 

  13. C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu, G. Schmidt, L.W. Molenkamp, Phys. Rev. Lett. 97, 017202 (2006)

    Article  ADS  Google Scholar 

  14. W.K. Liu, K.M. Whitaker, K.R. Kittilstved, D.R. Gamelin, J. Am. Chem. Soc. 126, 3910 (2006)

    Article  Google Scholar 

  15. D.M. Hoffman, B.K. Meyer, A.I. Ekimov, I.A. Merkulov, A.L. Efros, M. Rosen, G. Couino, T. Gacoin, J.P. Boilot, Solid State Commun. 114, 547 (2000)

    Article  ADS  Google Scholar 

  16. S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436, 91 (2005)

    Article  ADS  Google Scholar 

  17. S.-J. Cheng, Phys. Rev. B 72, 235332 (2005)

    Article  ADS  Google Scholar 

  18. M. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, T. Ohtani, Nature 408, 944 (2000)

    Article  ADS  Google Scholar 

  19. A.J. Heinrich, J.A. Gupta, C.P. Lutz, D.M. Eigler, Science 306, 466 (2004)

    Article  ADS  Google Scholar 

  20. A.M. Yakunin, A.Yu. Silow, P.M. Koenraad, J.H. Wolter, W. Van Roy, J. De Boeck, J.-M. Tang, M.E. Flatte, Phys. Rev. Lett. 92, 216806 (2004)

    Article  ADS  Google Scholar 

  21. J. Seufert, G. Bacher, M. Scheibner, A. Forchel, S. Lee, M. Dobrowolska, J.K. Furdyna, Phys. Rev. Lett. 88, 027402 (2002)

    Article  ADS  Google Scholar 

  22. A. Hundt, J. Puls, F. Henneberger, Phys. Rev. B 69, 121309 (2004)

    Article  ADS  Google Scholar 

  23. S. Mackowski, T. Gurung, T.A. Nguyen, H.E. Jackson, L.M. Smith, G. Karczewski, J. Kossut, Appl. Phys. Lett. 84, 3337 (2004)

    Article  ADS  Google Scholar 

  24. A.K. Bhattacharjee, C. Benoit à la Guillaume, Phys. Rev. B 55, 10613 (1997)

    Google Scholar 

  25. Al.L. Efros, M. Rosen, Ann. Rev. Mater. Sci. 30, 475 (2000)

    Google Scholar 

  26. K. Chang, J.B. Xia, F.M. Peeters, Appl. Phys. Lett. 82, 2661 (2003)

    Article  ADS  Google Scholar 

  27. A.L. Efros, M. Rosen, E.I. Rashba, Phys. Rev. Lett. 87, 206601 (2001)

    Article  ADS  Google Scholar 

  28. A.O. Govorov, Phys. Rev. B 70, 035321 (2004); Phys. Rev. B 72, 075358 (2005); Phys. Rev. B 72, 075359 (2005)

    Google Scholar 

  29. J. Fernández-Rossier, L. Brey, Phys. Rev. Lett. 93, 117201 (2004); J. Fernández-Rossier, Phys. Rev. B 73, 045301 (2006)

    Google Scholar 

  30. J.I. Climente, M. Korkusinski, P. Hawrylak, J. Planelles, Phys. Rev. B 71, 125321 (2005)

    Article  ADS  Google Scholar 

  31. F. Qu, P. Hawrylak, Phys. Rev. Lett. 95, 217206 (2005)

    Article  ADS  Google Scholar 

  32. F. Qu, P. Hawrylak, Phys. Rev. Lett. 96, 157201 (2006)

    Article  ADS  Google Scholar 

  33. R.M. Abolfath, P. Hawrylak, I. Zutic, Phys. Rev. Lett. 98, 207203 (2007)

    Article  ADS  Google Scholar 

  34. P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993)

    Article  ADS  Google Scholar 

  35. S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S.J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, M. Bayer, Phys. Rev. Lett. 92, 187402 (2004)

    Article  ADS  Google Scholar 

  36. L.G.C. Rego, P. Hawrylak, J.A. Brum, A. Wojs, Phys. Rev. B 55, 15694 (1997)

    Article  ADS  Google Scholar 

  37. F.V. Kyrychenko, J. Kossut, Phys. Rev. B 70, 205317 (2004)

    Google Scholar 

  38. L.G.C. Rego, J.A. Brum, P. Hawrylak, Physica E 2, 785 (1998)

    Article  ADS  Google Scholar 

  39. C. Pryor, M.E. Pistol, L. Samuelson, Phys. Rev. B 56, 10404 (1997); C. Pryor, Phys. Rev. B 57, 7190 (1998)

    Google Scholar 

  40. G. Klimeck, F. Oyafuso, T.B. Boykin, R.C. Bowen, P. von Allmen, Comp. Model. Eng. Sci. 3, 601 (2002)

    MATH  Google Scholar 

  41. G.W. Bryant, W. Jaskolski, Physica E 11, 72 (2001)

    Article  ADS  Google Scholar 

  42. S.J. Sun, Y.-C. Chang, Phys. Rev. B 62, 13631 (2000)

    Article  ADS  Google Scholar 

  43. W. Sheng, S.J. Cheng P. Hawrylak, Phys. Rev.B 65, 235205 (2005)

    Google Scholar 

  44. A. Wojs, P. Hawrylak, Phys. Rev. B53, 10841 (1996)

    ADS  Google Scholar 

  45. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996)

    Article  ADS  Google Scholar 

  46. P. Kacman, Semicond. Sci. Technol. 16, R25 (2001) and references therein

    Google Scholar 

  47. J.-M. Tang, Michael E. Flatte, Phys. Rev. Lett. 92, 047201 (2004)

    Google Scholar 

  48. P. Mahadevan, A. Zunger, D.D. Sarma, Phys. Rev. Lett. 93, 177201 (2004)

    Article  ADS  Google Scholar 

  49. B.E.Larson, K.C. Hass, H. Ehrenreich, Phys. Rev. B 37, 4137 (1988)

    Google Scholar 

  50. Y. Shapira Jr., N.F. Olivera, Phys. Rev. B 35, 6888 (1987)

    Article  ADS  Google Scholar 

  51. H. Kepa, V.K. Le, C.M. Brown, M. Sawicki, J.K. Furdyna, T.M. Giebultowicz, T. Dietl, Phys. Rev. Lett. 91, 087205 (2003)

    Article  ADS  Google Scholar 

  52. A. Sachrajda, P. Hawrylak, M.Ciorga, in Transport in Quantum Dots, chap. 3, ed. by J. Bird (Kluwer, Dordrecht, 2003)

    Google Scholar 

  53. M. Korkusinski, P. Hawrylak, M. Ciorga, M. Pioro-Ladrière, A.S. Sachrajda, Phys. Rev. Lett. 93, 206806 (2004)

    Article  ADS  Google Scholar 

  54. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  55. S. Das Sarma, E.H. Hwang, A. Kaminski, Phys. Rev. B 67, 155201 (2003)

    Article  ADS  Google Scholar 

  56. C. Dharma-Wardana, F. Perrot, in Density Functional Theory, ed. by E.K.U. Gross, R.M. Dreizler (Plenum Press, New York, 1995)

    Google Scholar 

  57. D.R. Schmidt, A.G. Petukhov, M. Foygel, J.P. Ibbetson, S.J. Allen, Phys. Rev. Lett. 82, 823 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been carried out in collaboration with M.Korkusinski, F. Qu, R. Abolfath, and J.I. Climente. Partial support from Canadian Institute for Advanced Research, QuantumWorks, and NRC-CNRS CRP is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Hawrylak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hawrylak, P. (2010). Magnetic Ion–Carrier Interactions in Quantum Dots. In: Gaj, J., Kossut, J. (eds) Introduction to the Physics of Diluted Magnetic Semiconductors. Springer Series in Materials Science, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15856-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15856-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15855-1

  • Online ISBN: 978-3-642-15856-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics