Skip to main content
  • 7084 Accesses

Zusammenfassung

Das Klima ist sicher einer der stärksten und unmittelbar am meisten spürbaren Umweltfaktoren; es prägt das wirtschaftliche, kulturelle und politische Gefüge einer Gesellschaft wie kaum ein anderer Umwelteinfluß. Die Geschichte der frühen Hochkulturen deutet an, daß Höhepunkte intellektueller und kultureller Leistungsfähigkeit wohl an das Vorhandensein eines günstigen Klimas gebunden waren; wahrscheinlich konnte in den frühen Kulturen nur dieses die Chance geben, über den reinen Existenzkampf hinaus zusätzliches intellektuelles Potential zu aktivieren. Es ist sicher einer Überlegung wert, ob nicht auch manche wirtschaftliche und politische Probleme der Gegenwart zu einem ganz erheblichen Teil klimatische Probleme sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh and Dublin Philos Magazine J Sci 5:237–276

    Article  Google Scholar 

  • Augustin L, Barbante C, Barnes PR et al. (June 2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628. doi:10.1038/nature02599. PMID 15190344

    Article  CAS  Google Scholar 

  • Bender M, Sowers T, Dickson M-L, Orchardo J, Grootes P, Mayewski PA, Meese DA (2002) Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372:663–666. doi:10.1038/372663a0

    Article  Google Scholar 

  • Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  • Bradley RS, Diaz HF, Eischeid JK, Jones PD, Kelly PM, Goodess CM (1987) Precipitation fluctuations over northern hemisphere land areas since the mid-19th century. Science 237:171–175

    Article  CAS  Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim Cosmochim Acta 53:2465–2501

    Article  CAS  Google Scholar 

  • Brohan P et al. (2006) Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Brown RD (2000) Northern hemisphere snow cover variability and change 1915–97. J Clim 13:2339–2355

    Article  Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611–619

    Article  Google Scholar 

  • Cronin TM (1999) Principles of Paleoclimatology. Perspectives in Paleobiology and Earth History Series. Columbia University Press, New York, NY, xv+560 pp

    Google Scholar 

  • Cubasch U et al. (2001) Projections of future climate changes. In: Houghton JT et al (eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, pp. 525–582

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  • Diaz HF, Bradley RS, Eischeid JK (1989) Precipitation fluctuations over global land areas since the late 1800s. J Geophys Res 94:1195–1210

    Article  Google Scholar 

  • Eddy JA (1977) The case of missing sunspots. Sci Am 236:80–92

    Article  Google Scholar 

  • Edwards T, Fichefet J, Hargreaves C, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate–carbon cycle models. J Clim 27:2721–2751. doi:10.1175/2007JCLI1905.1

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578

    Article  CAS  Google Scholar 

  • Fischer G, Wefer G (Eds.) (1999) Use of Proxies in Paleooceanography, Examples from the South Atlantic. ISBN: 978-3-540-66340-9

    Google Scholar 

  • Forster PM, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, D. Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Forster PM, Gregory JM (2006) The climate sensitivity and its components diagnosed from earth radiation budget data. J Clim 19:39–52

    Article  Google Scholar 

  • Goosse H, Barriat PY, Lefebvre W, Loutre MF, Zunz V (date of view). Introduction to climate dynamics and climate modeling. Online textbook available at http://www.climate.be/textbook

  • Graedel TE, Crutzen P (1993) Atmospheric change: an earth system perspective. J Chem Educ 70(9):A252. doi:10.1021/ed070pA252.2

    Google Scholar 

  • Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15:3117–3121

    Article  Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  CAS  Google Scholar 

  • Hall A, Xin Qu (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502. doi:10.1029/2005GL025127

    Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J Geophys Res 1988:9341–9364

    Article  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Article  Google Scholar 

  • Hansen J, Lebedeff S (1987) Global trends of measured air temperature. J Geophys Res 92:13345–13372

    Article  Google Scholar 

  • Hansen J, Lebedeff S (1988) Global surface air temperatures: update through 1987. Geophys Res Lett 15:323–326

    Article  Google Scholar 

  • Hansen JE, Wei-Chyung W, Lacis AA (1978) Mount Agung eruption provides test of global climatic pertubations. Science 199:1065–1068

    Article  CAS  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato RM, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth's energy imbalance: confirmation and implications. Science 308:1431–1435. doi:10.1126/science.1110252

    Article  CAS  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union: 130–163

    Google Scholar 

  • Hansen J, Sato M, Ruedy et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  CAS  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  CAS  Google Scholar 

  • Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305. doi:10.1029/2004GL019626

    Article  Google Scholar 

  • Imbrie J, Hays JD, Martinson D, McIntyre A, Mix A, Morley J, Pisias N, Prell W, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Berger AL et al (eds) Milankovitch and Climate, Part I. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Johnsen SJ et al (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, Dye-3, GRIP, GISP2, Renland and North GRIP. J Quat Sci 16:299–307

    Article  Google Scholar 

  • Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Clim 1:654–660

    Article  Google Scholar 

  • Jones PD, Wigley TML (1990) Global warming trends. Sci Am Aug 1990:66–73 (deutsch: Die Erwärmung der Erde seit 1850, Spektr Wiss Okt 1990:108–116)

    Google Scholar 

  • Jones PD, Wigley TML, Wright PB (1986) Global temperature variations between 1861 and 1984. Nature (London) 322:430–434

    Article  Google Scholar 

  • Joshi M, Shine K, Ponater M, Stuber N, Sausen R, Li L (2003) A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change. Clim Dyn 20:843–854. doi 10.1007/s00382-003-0305-9

    Google Scholar 

  • Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007) Historical overview of climate change. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Lemke P, Ren J, Alley RB et al (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geodesy, 27(1–2):79–94

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Garcia HE, Locarnini RA (2005) Linear trends of zonally averaged thermosteric, halosteric, and steric sea level changes for individual ocean basins and the world ocean, (1955–1959)-(1994–1998). Geophys Res Lett 32:L16601. doi:1029/2005GL023761

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi:10.5194/acp-5-715-2005

    Article  CAS  Google Scholar 

  • Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385

    Article  Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of ice ages: Development of a high-resolution 0-300000-year chronostratigraphy. Quart Res 27:1–29

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier-Villars, Paris

    Google Scholar 

  • Nakićenovi N, Swart R (eds) (2000) Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, 599 pp

    Google Scholar 

  • North GR, Cahalan RF, Coakley JA (1981) Energy balance climate models. Rev Geophys Space Phys 19:91–121

    Article  Google Scholar 

  • Oort AH (1971) The observed annual cycle in the meridional transport of atmospheric energy. J Atmos Sci 28:325

    Article  Google Scholar 

  • Petit JR, Basile I, Leruyuet A et al (1997) Four climate cycles in Vostok ice core. Nature 387:359–360.

    Article  CAS  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Plattner GK, Knutti R, F. Joos F et al (2005) EMIC intercomparison project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn 25:363–385. doi:10.1007/s00382-005-0042-3

    Article  Google Scholar 

  • Ramanathan V, Coakley JA (1978) Climate modelling through radiative-convective models. Rev Geophys Space Phys 16:465–489

    Article  CAS  Google Scholar 

  • Randall DA, Wood RA, Bony S et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Roeckner E, Siebert T, Feichter J (1995) Climatic response to anthropogenic sulfate forcing simulated with a general circulation model. In: Charlson RJ, Heintzenberg J (eds) Aerosol Forcing of Climate. Wiley, Chichester, pp 349–362

    Google Scholar 

  • Roedel W (1980) On the climate-radiocarbon relationship: Nitric oxide and ozone as connecting links between radiation and earth’s surface temperatures. Radiocarbon 22:250–259

    CAS  Google Scholar 

  • Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163. doi:10.1007/s00382-006-0126-8

    Article  Google Scholar 

  • Schönwiese CD (1979) Klimaschwankungen. Springer, Berlin Heidelberg, New York, NY

    Book  Google Scholar 

  • Schönwiese CD (1985) Praktische Statistik für Meteorologen und Geowissenschaftler. Borntraeger, Berlin

    Google Scholar 

  • Schönwiese CD, Birrong W, Schneider U, Stähler U, Ullrich R (1990) Statistische Analyse des Zusammenhangs säkularer Klimaschwankungen mit externen Einflußgrößen und Zirkulationsparametern unter besonderer Berücksichtigung des Treibhausproblems. Ber Inst Meteorol Geophys Univ Frankfurt 84, Frankfurt/Main

    Google Scholar 

  • Schwarzbach M (1974) Das Klima der Vorzeit. Enke, Stuttgart

    Google Scholar 

  • Sellers WD (1969) A global climatic model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400

    Article  Google Scholar 

  • Smith M (1993) Neural Networks for Statistical Modelling. Van Nostand Reinhold, New York, NY

    Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean–atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296:727–730. doi:10.1126/science.296.5568.727.

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning et al (2007) Technical summary. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Solomon S, Plattner GK, Knutti, R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–1709

    Article  CAS  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 1219:327. doi:10.1126/science.1182488

    Google Scholar 

  • Stouffer RJ (2004) Time scales of climate response. J Clim 17:209–217

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Walter A, Denhard M, Schönwiese CD (1998) Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorol Z, NF 7:171–180

    Google Scholar 

  • Washington WM, Meehl GA (1984) Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J Geophys Res 89:9475–9503

    Article  CAS  Google Scholar 

  • Washington WM, Meehl GA (1989) Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model. Clim Dyn 4:1–38

    Article  Google Scholar 

  • Wigley TML, Raper SCB (1990) Natural variability of the climate system and detection of the greenhouse effect. Nature (London) 344:324–327

    Article  Google Scholar 

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003JC002260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Roedel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roedel, W., Wagner, T. (2011). Klima und Klimaveränderungen . In: Physik unserer Umwelt: Die Atmosphäre. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15729-5_10

Download citation

Publish with us

Policies and ethics