Skip to main content

Multicriteria Decision Making

  • Chapter
  • First Online:
Location Theory and Decision Analysis

Abstract

While most of us have practiced multicriteria decision making (MCDM) in our business and personal life, it is relatively recent that the knowledge base for such a procedure has been organized and quantified into a formal set of methodologies. In some ways, it represents the amalgamation of descriptive and prescriptive models in the context of behavioral sciences. Descriptive models were defined in Chapter 3 to include such techniques as the conventional use of simulation and statistics that replicate the real world scenario. Prescriptive models, on the other hand, refer to procedures, such as optimization, which go one step further to arrive at a desirable course of action. We will show in this chapter that through the integration of both descriptive and prescriptive procedures, the role of quantitative analysis becomes clear in a pluralistic society with many interests and aspirations.

“I have hardly ever known a mathematician who was capable of reasoning.”

Plato

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, A. E. (2009). “Multiattribute Utility Copulas.” Operations Research. 57:1367–1383.

    Article  MathSciNet  Google Scholar 

  • Ang, A; Tang, W. H. (1984). Probability concepts in engineering planning and design. vol. II: Decision, risk and reliability. New York: Wiley.

    Google Scholar 

  • Arrow, K. (1963). Social choice and individual values. New Haven, Connecticut: Yale University Press.

    Google Scholar 

  • Askoy, Y.; Butler, T. W.; Minor, E. D. III (1994). Comparative studies in interactive multiple objective mathematical programming. Working Paper. A. B. Freeman School of Business. Tulane University. New Orleans, Louisiana.

    Google Scholar 

  • Antunes, C. H.; Climaco, J. (1994). “Decision aid for discrete alternative multiple criteria problems: A visual interactive approach.” Information and Decision Technologies 19:185–193.

    MATH  Google Scholar 

  • Balling, R. J.; Taber, J.; Brown, M. R.; Day, K. (1998). Multiobjective urban planning using a genetic algorithm. Working Paper. Department of Civil and Environmental Engineering. Brigham Young University. Provo, Utah.

    Google Scholar 

  • Bana e Costà, C. A. (1990). Readings in multiple criteria decision aid. Berlin, Germany and New York: Springer-Verlag.

    MATH  Google Scholar 

  • Bana e Costà, C. A.; Enslin, L.; Zanella, I. J. (1998). “A real-world MCDA application in cellular telephony systems.” In Trends in multicriteria decision making, edited by T.J. Stewart and R. C. van den Honert. Berlin, Germany and New York: Springer-Verlag, 412–423.

    Google Scholar 

  • Beroggi, E. G.; Wallace, W.A. (1995). “Operational control of the transportation of hazardous material: An assessment of alternative decision models.” Management Science 41:1962–1967.

    Article  Google Scholar 

  • Bogetoft, P.; Ming, C.; Tind, J. (1994).”Price-directive decision making in hierarchical systems with conflicting preferences.” Journal of Multi-Criteria Decision Analysis 3:65–82.

    Article  MATH  Google Scholar 

  • Bogetoft, P.; Pruzan, P. (1991). Planning with multiple criteria: Investigation, communication, choice. Amsterdam, The Netherlands: North-Holland.

    Google Scholar 

  • Briggs, T. H.; Kunsch, P.L.; Mareschal. B. (1990). “Nuclear waste management: An application of the Multicriteria PROMETHEE methods.” European Journal of Operational Research 44:1–10.

    Article  Google Scholar 

  • Buchanan, J. T.; Daellenbach, H.G. (1987). “A comparative evaluation of interactive solution methods for multiple objective decision making.” European Journal of Operational Research 29:353–359.

    Article  Google Scholar 

  • Buchanan, J. T. (1994). “An experimental evaluation of interactive MCDM methods and the decision-making process.” Journal of the Operational Research Society 45:1050–1059.

    MATH  Google Scholar 

  • Chan, Y. (2005). Location, transport and land use: Modelling spatial-temporal information. Berlin and New York: Springer.

    Google Scholar 

  • Chankong, V.; Haimes, Y. Y. (1983). Multiobjective decision making—Theory and methodology. Amsterdam, The Netherlands: North-Holland.

    MATH  Google Scholar 

  • Cook, W. D. (1976). “Zero-sum games with multiple goals.” Naval Research Logistics Quarterly 23, No. 4:615–622.

    Article  MathSciNet  MATH  Google Scholar 

  • de Neufville, R. (1990). Applied systems analysis: Engineering planning and technology management. New York: McGraw-Hill.

    Google Scholar 

  • Dyer, J. S.; Fishburn, P. C.; Steuer, R. E.; Wallenius, J.; Zionts, S. (1992). “Multiple criteria decision making: Multiattribute utility theory: The next ten years.” Management Science 38, No. 5:685–654.

    Google Scholar 

  • El-Mahgary, S.; Lahdelma, R. (1995). “Data envelopment analysis: Visualizing the results.” European Journal of Operational Research 85:700–710.

    Article  Google Scholar 

  • Erkut, E.; Moran, S. R. (1991). “Locating obnoxious facilities in the public sector: An application of the analytic hierarchy process to municipal landfill siting decisions.” Socio-Economic Planning Sciences 5, No. 2:89–102.

    Article  Google Scholar 

  • Fishburn, P. C. (1988). Nonlinear preference and utility theory. Baltimore, Maryland: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Gardiner, L. R.; Steuer, R. E. (1993). “Unified interactive multiple objective programming.” European Journal of Operational Research 71:1244–1259.

    Google Scholar 

  • Gardiner, L. R.; Steuer, R.E. (1995). Range equalization scaling and solution dispersion in the Tchebycheff method: A preliminary study. Working Paper. Department of Management. Auburn University. Alburn, Alabama.

    Google Scholar 

  • Goicoechea, A.; Hansen, D. R.; Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. New York: Wiley.

    Google Scholar 

  • Haghani, A. E. (1991). “Multicriteria decision making in location modeling.” Transportation Research Record 1328:88–97.

    Google Scholar 

  • Hannan, E. L. (1982). “Reformulating zero-sum games with multiple goals.” Naval Research Logistic Quarterly 29, No. 1:113–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Hegde, G. G.; Tadikmalla, P. R. (1990). “Site selection for a sure service terminal.” European Journal of Operational Research 48:77–80.

    Article  Google Scholar 

  • Huang, Z.; Li, S. (1994). “The role of cardinal utilities in multiple objective programming.” American Journal of Mathematical and Management Sciences 14:301–325.

    MathSciNet  MATH  Google Scholar 

  • Hokkanen, J.; Lahdelma, R.; Salimer, P. (1999). “A multiple criteria decision model for analyzing and choosing among different development patterns for the Helsinki Cargo Harbor.” Socio-Economic Planning Sciences 33:1–23.

    Article  Google Scholar 

  • Ignizio, J. P.; Cavalier, T. M. (1994). Linear programming. Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  • Islam, R.; Biswal, M. P.; Alam, S. S. (1996). Clusterization of alternatives in analytic hierarchy process. Working Paper. Department of Mathematics. Indian Institute of Technology. Kharagpur, India.

    Google Scholar 

  • Karaivanova, J.; Korhonen, P.; Narula, S.; Wallenius, J.; Vassiler, V. (1992). A reference direction approach to multiple objective integer linear programming. Working Paper. Institute of Informatics. Sofia, Bulgaria.

    Google Scholar 

  • Karasakal, E.; Köksalan, M. (2009). “Generating a representative subset of the nondominated frontier in multiple criteria decision making.” Operations Research 57, No. 1:187–199.

    Article  MATH  Google Scholar 

  • Keeney, R. L.; and Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley.

    Google Scholar 

  • Keeney, R. L.; Kirkwood, C. W. (1975). “Group decision making using cardinal social welfare functions.” Management Science 22, No. 4:430–437.

    Article  MathSciNet  Google Scholar 

  • Keeney, R. L. (1994). “Using values in operations research.” Operations Research 42:793–813.

    Article  Google Scholar 

  • Kirkwood, C. (1997). Structural decision making. Belmont, California: ITP Duxbury.

    Google Scholar 

  • Koller, G. (2005). Risk Assessment and Decision Making in Business and Industry: A Practical Guide, 2nd ed. Boca Raton, Florida: CRC Press.

    Book  MATH  Google Scholar 

  • Korhonen, P. (1992). “Multiple criteria decision support: The state of research and future directions.” Computers and Operations Research 19:305–307.

    Article  Google Scholar 

  • Korhonen, P.; Laakso, J. (1986). “A visual interactive method for solving the multiple criteria problem.” European Journal of Operational Research. 24:277–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, Y-J.; Liu, T-Y.; Hwang, C-L. (1994) “TOPSIS for MODM.” European Journal of Operational Research 76:486–500.

    Article  MATH  Google Scholar 

  • Leitmann, G. Ed. (1976). Multicriteria decision making and differential games. New York: Plenum.

    MATH  Google Scholar 

  • Lewis, H. S.; Butler, T. W. (1993). “An interactive framework for multi-person, multiobjective decisions.” Decision Sciences 24:1–22.

    Article  Google Scholar 

  • Li, Z.; Sinha, K. C. (2004). “Methodology for multicriteria decision making in highway asset management.” Transportation Research Record, No. 1885:79–87.

    Google Scholar 

  • Li, Z. F.; Wang, S. Y. (1994). “Lagrange multipliers and saddle points in multi-objective programming.” Journal of Optimization Theory and Applications 83:63–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman, E. R. (1991). Multi-objective programming in the USSR. Boston, Massachusetts: Academic Press.

    MATH  Google Scholar 

  • Luce, R. D.; von Winterfeldt, D. (1994) “What common ground exists for descriptive, prescriptive, and normative utility theories?” Management Science 40:263–279.

    Article  MATH  Google Scholar 

  • Massam, B. H. (1988). “Multi-criteria decision making MCDM techniques in planning.” Vol. 30, Part I of Progress in planning, edited by D. Diamond and J. B. McLoughlin. Oxford, England and New York: Pergamon Press.

    Google Scholar 

  • Mirchandani, P.; Reilly, J. (1987). “Spatial distribution design for fire-fighting units.” In Spatial analysis & location-allocation models, edited by A. Ghosh and G. Rushton. New York: Van Nostrand Reinhold, 186–223.

    Google Scholar 

  • Moulin, H. (1986). Game theory for the social sciences, 2nd and Rev. ed. New York: New York University Press.

    Google Scholar 

  • Narula, S. C.; Vassilev, V. (1994) “An interactive algorithm for solving multiple objective integer linear programming problems.” European Journal of Operational Research. 79:443–450.

    Article  MATH  Google Scholar 

  • Patterson, K.; Horton, K. G.; Chan, Y. (1994) Games with multiple payoffs. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Payne, R. (1995). Games with multiple payoffs: A rejoinder. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Reilly, J. (1983). Development of a fire station placement model with consideration of multiple arriving units. Doctoral Dissertation. Rensselaer Polytechnic Institute. Troy, New York.

    Google Scholar 

  • Rinquest, J. L. (1992). Multiobjective optimization: Behavioral and computational considerations. Boston, Mass.: Kluwer Academic Publishers.

    Google Scholar 

  • Roy, B. (1977) “A conceptual framework for a prescriptive theory of ‘decision aid’.” TIMS Studies in the Management Science 3:55–64.

    Google Scholar 

  • Saaty, T. L. (1980). The Analytic hierarchy process. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Saber, H. M.; Ravindran, A. (1996) “A partitioning gradient based algorithm for solving nonlinear goal programming problems.” Computers and Operations Research 23:141–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Sainfort, F.; Deichtmann, J. M. (1996). “Decomposition of utility functions on subsets of product sets.” Operations Research 44:609–616.

    Article  MATH  Google Scholar 

  • Seo, F.; Sakawa, M. (1988). Multiple criteria decision analysis in regional planning. Dordrecht, Holland: Reidel.

    MATH  Google Scholar 

  • Shields, M.; Chan, Y. (1991). The extended ADBASE program. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Staats, R.; Chan, Y. (1994). Numerical examples of multiple criteria decision making. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.

    MATH  Google Scholar 

  • Stewart, T. J. (1999). “Evaluation and Refinement of Aspiration Based Methods in MCDM.” European Journal of Operational Research 113:643–652.

    Article  MATH  Google Scholar 

  • Tiley, J. S. (1994). Solvent substitution methodology using multiattribute utility theory and the analytical hierarchical process. Master’s Thesis. AFIT/GEE/ENS/945–3. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Van Herwijnen, M.; Janssen, R. (1998). “The use of MCDM to evaluate trade-offs between spatial objectives.” In Trends in multicriteria decision making, edited by T. J. Stewart and R. C. van den Honert. Berlin, Germany and New York: Springer-Verlag, 303–312.

    Google Scholar 

  • Van Herwijnen, M.; Rietveld, P. (1999). “Spatial dimensions in multicriteria analysis.” In Spatial multicriteria decision making and analysis, edited by J.-C. Thill. Brookfield, Vermont: Ashgate, 77–102.

    Google Scholar 

  • Vincke, P. (1992). Multicriteria decision aid. Chichester, England: Wiley.

    Google Scholar 

  • Wakker, P. P. (1989). Additive representation of preferences: A new foundation of decision analysis. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • White, D. J. (1990). “A bibliography on the applications of mathematical programming multiple-objective methods.” Journal of the Operational Research Society 41:669–691.

    MATH  Google Scholar 

  • Yu, P. L. (1985). Multiple criteria decision making. New York: Plenum Press.

    MATH  Google Scholar 

  • Zelany, M. (1976). “Games with multiple payoffs.” International Journal of Game Theory 4, No. 4:179–191.

    Article  Google Scholar 

  • Zelany, M. (1982). Multiple criteria decision-making, New York: McGraw-Hill.

    Google Scholar 

  • Zionts, S. (1992). “Some thoughts on research in multiple criteria decision making.” Computers and Operations Research 19:308–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupo Chan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, Y. (2011). Multicriteria Decision Making. In: Location Theory and Decision Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15663-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15663-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15662-5

  • Online ISBN: 978-3-642-15663-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics