Skip to main content

Prescriptive Tools for Analysis

  • Chapter
  • First Online:
Location Theory and Decision Analysis
  • 2388 Accesses

Abstract

This chapter will follow our discussion on the two methods of analysis identified in our taxonomy, focusing now on prescriptive instead of descriptive techniques. By way of a definition, prescriptive technique is generally used in system design, where a stated goal or objective is to be achieved. In the context of this book, the function of a prescriptive model then, is to configure a facility location or land use plan to achieve this goal or objective. For example, if one is to stimulate residential development in an area, the model, after it has been set up, will prescribe a land use plan that will provide all the utilities, transportation, and zoning that will best facilitate such a development. To the extent that we often wish to provide the best design, optimization procedures are an integral part of the prescriptive tool kit. Here in this chapter, we will introduce the basic building blocks of prescriptive analysis (including optimization concepts), deferring most of the implementation and computational details to subject focused chapters throughout this book and the appropriate book appendices. Included in the latter category are such appendices as “Optimization Schemes” (Appendix 4) and “Control, Dynamics, and System Stability” (Appendix 1).

“The mathematical sciences particularly exhibit order, symmetry and limitation, and these are the greatest forms of the beautiful.”

Aristotle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Au, T.; Stelson, T. E. (1969). Introduction to systems engineering: Deterministic models. Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  • Bartholomew, A.; Brown, S.; Chan, Y. (1990). Airport location problem: Initial formulation. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Bazaraa, M. S.; Jarvis, J. J.; Sherali, H. D. (1990). Linear programming and network flow. New York: Wiley.

    Google Scholar 

  • Bersekas, D. P. (1991). Linear network optimization: Algorithms and codes. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Brimberg, J.; Chen, R.; Chen, D. (1998). “Accelerating convergence in the Fermat-Weber location problem.” Operations Research Letters 22:151–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Brooke, A.; Kendrick, D.; Meeraus, A. (1995). GAMS: Release 2.25. (Scientific Press Series). Boston: Boyd and Fraser.

    Google Scholar 

  • Burkard, R. E. (1990). “Locations with spatial interactions: The quadratic assignment problem.” In Discrete facility location theory, edited by P. Mirchandani and R. L. Francis. New York: Wiley-Interscience.

    Google Scholar 

  • Cameron, D. M.; O'Brien, D. L.; Chan, Y. (1990). Airport location problem: Alternative formulation. Working Paper. Deptartment of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Chan, Y. (2005). Location, transport and land-use: Modeling spatial-temporal information. Berlin and New York: Springer.

    Google Scholar 

  • Chen, P. C.; Hansen, P.; Janmard, B.; Tuy, H. (1998). “Solution of the multisource Weber and conditional Weber problems by D.-C. programming.” Operations Research 46, No. 4:548–562.

    Article  MathSciNet  MATH  Google Scholar 

  • Claunch, E.; Goehring, S.; Chan, Y. (1962). Airport location problem: Three- and four-city cases. Working Paper. Deptartment of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Devish, O.; Arentz, T.; Borger, A.; Timmermans, H. (2006). “Bilevel negotiation protocol for multiagent simulation of housing transactions and market clearing processes.” Transportation Research Record, No. 1977:84–92.

    Google Scholar 

  • Francis, R. L.; McGinnis Jr., L. F.; White, J. A. (1992). Facility layout and location: An analytical approach. Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  • Hamerslag, R.; Van Berkum, E. C.; Repolgle, M. A. (1993). A model to predict the influence of new railways and freeways on land use development. (Presentation Paper 930875). Paper presented at the 72nd annual meeting of the Transportation Research Board, Washington, D. C.

    Google Scholar 

  • Handler, G. Y.; Mirchandani, P. B. (1979). Location on Networks: Theory and Algorithms. Cambridge, Massachusetts: MIT Press.

    MATH  Google Scholar 

  • Hansen, P.; Mladenovic, N.; Taillard, E. (1998). “Heuristic solution of the multisource Weber problem as a p-median problem.” Operations Research Letters 22:55–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Harry, D.; Farmer, R.; Chan, Y. (1995) Airport location problem: Comparison of algorithms. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Hillier, F. S.; Lieberman, G. J. (1986). Introduction to operations research. San Francisco, California: Holden-Day.

    MATH  Google Scholar 

  • Hillier, F. S.; Lieberman, G. J. (1990). Introduction to mathematical programming. New York: McGraw-Hill.

    Google Scholar 

  • Hurter, A. P.; Martinich, J. S. (1989). Facility location and the theory of production. Boston: Kluwer Academic Press.

    Google Scholar 

  • Kent, B.; Bare, B. B.; Field, R. C.; Radley, G. A. (1991) “Natural resource land management planning using large-scale linear programs: The USDA forest experience with FORPLAN.” Operations Research 39:13–27.

    Article  Google Scholar 

  • Lasdon, L.; Warren, A. (1986) GINO: General interactive optimizer. (Scientific Press Series). Femcraftvillage, Massachusetts: Boyd and Fraser.

    Google Scholar 

  • Leonard, R.; McDaniel, P.; Nelson, R. (1991). Airport location problem. Working Paper. Deptartment of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Magnanti, T.; Wong, R. T. (1990). “Decomposition methods for facility location problems.” In Discrete facility location theory, edited by Mirchandani, P. and Francis, R. L. New York: Wiley-Interscience.

    Google Scholar 

  • McEachin, R.; Taylor, G.; Chan, Y. (1992). Airport location problem: Linear and nonlinear formulations and solutions. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Nijkamp, P.; Reggiani, A. (1992). Interaction, evolution and chaos in space. Berlin and New York: Springer-Verlag.

    Google Scholar 

  • Raulerson, J.; Bowyer, R.; Zornick, J.; Chan, Y. (1994). The Herbert-Stevens residential model. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Ravindran, A.; Philips, D. T.; Solberg, J. (1987). Operations research: Principles and practices, 2nd ed. New York: Wiley.

    Google Scholar 

  • Russell, D. M.; Wang, R.; Berkhin, P. (1992). HiQ reference manual. Los Gatos, California: Bimillennium Corporation.

    Google Scholar 

  • SAS Institute Inc. (1991). Changes and enhancements to SAS/OR software, (Release 6.07). Preliminary documentation. Cary, North Carolina.

    Google Scholar 

  • SAS Institute Inc. (1991). SAS/OR user’s guide. (Version 5). Cary, North Carolina.

    Google Scholar 

  • Thomas, P.; Chan, Y.; Lehmkuhl, L.; Nixon, W. (2002). “Obnoxious-facility Location and Data-envelopment Analysis: a Combined Distance-based Formulation.” European Journal of Operational Research 141, No. 3:495–514.

    Article  MathSciNet  MATH  Google Scholar 

  • Vernon, R.; Lanning, J.; Chan, Y. (1992). The residential allocation prediction model: A linear-programming/network-flow problem. Working Paper. Department of Operational Sciences. Air Force Institute of Technology. Wright-Patterson AFB, Ohio.

    Google Scholar 

  • Wilson, A. G.; Coelho, J. D.; Macgill, S. M.; Williams, H. C. W. L. (1981). Optimization in locational and transport analysis. Chichester, England: Wiley.

    MATH  Google Scholar 

  • Winston, W. L. (1991). Operations research: Applications and algorithms, 3rd ed. Belmont, California: Duxbury Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupo Chan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, Y. (2011). Prescriptive Tools for Analysis. In: Location Theory and Decision Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15663-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15663-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15662-5

  • Online ISBN: 978-3-642-15663-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics