Skip to main content

Exploiting Structured Sparsity in Large Scale Semidefinite Programming Problems

  • Conference paper
Mathematical Software – ICMS 2010 (ICMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Included in the following conference series:

  • 1737 Accesses

Abstract

Semidefinite programming (SDP) covers a wide range of applications such as robust optimization, polynomial optimization, combinatorial optimization, system and control theory, financial engineering, machine learning, quantum information and quantum chemistry. In those applications, SDP problems can be large scale easily. Such large scale SDP problems often satisfy a certain sparsity characterized by a chordal graph structure. This sparsity is classified in two types. The one is the domain space sparsity (d-space sparsity) for positive semidefinite symmetric matrix variables involved in SDP problems, and the other the range space sparsity (r-space sparsity) for matrix-inequality constraints in SDP problems. In this short note, we survey how we exploit these two types of sparsities to solve large scale linear and nonlinear SDP problems. We refer to the paper [7] for more details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agler, J., Helton, J., McCullough, S., Rodman, L.: Positive Semidefinite Matrices with a Given Sparsity Pattern. Linear Algebra Appl. 107, 101–149 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas, P., Ye, Y.: Semidefinite Programming for Ad Hoc Wireless Sensor Network Localization. In: Proceedings of the Third International Symposium on Information Processing in Sensor Networks, pp. 46–54. ACM Press, New York (2004)

    Chapter  Google Scholar 

  3. Blair, J.R.S., Peyton, B.: An Introduction to Chordal Graphs and Clique Trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer, New York (1993)

    Google Scholar 

  4. Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., Yamashita, M.: User’s Manual for SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization Problems. Research Report B-453, Dept. of Math. and Comp. Sci., Tokyo Institute of Technology, Tokyo 152-8552, Japan (2009)

    Google Scholar 

  5. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework. SIAM Journal on Optimization 11, 647–674 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grone, R., Johnson, C.R., Sá, E.M., Wolkowitz, H.: Positive Definite Completions of a Partial Hermitian Matrices. Linear Algebra Appl. 58, 109–124 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion. Research Report B-452, Dept. of Math. and Comp. Sci., Tokyo Institute of Technology, Tokyo 152-8552, Japan (2009)

    Google Scholar 

  8. Kim, S., Kojima, M., Waki, H.: Exploiting Sparsity in SDP Relaxation for Sensor Network Localization. SIAM Journal of Optimization 20, 192–215 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lasserre, J.B.: Global Optimization with Polynomials and the Problems of Moments. SIAM Journal on Optimization 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results. Mathematical Programming 95, 303–327 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. SDPA’s homepage, http://sdpa.indsys.chuo-u.ac.jp/sdpa/

  12. SFSDP’s homepage, http://www.is.titech.ac.jp/~kojima/SFSDP122/SFSDP.html

  13. SparseCoLO’s homepage, http://www.is.titech.ac.jp/~kojima/SparseCoLO/SparseCoLO.htm

  14. SparsePOP’s homepage, http://www.is.titech.ac.jp/~kojima/SparsePOP/SparsePOP.html

  15. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems. ACM Transactions on Mathematical Software 35, 15 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kojima, M. (2010). Exploiting Structured Sparsity in Large Scale Semidefinite Programming Problems. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics