Skip to main content

Mesh Construction with Prescribed Properties Near Boundary

  • Conference paper
Proceedings of the 19th International Meshing Roundtable
  • 1128 Accesses

Summary

A quasi-conformal mapping of the parametric domain onto the underlying physical domain is used to generate a 2D structured mesh with required properties: grid line orthogonality and prescribed mesh point clustering near the domain boundary. The functions implementing the mapping are sought by solving the Dirichlet problem for the elliptic partial differential equations. An additional control for the cell shape is executed by introducing a local mapping. Example of the mesh near the airfoil is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steger, J.L., Chausse, D.S.: Generation of body-fitted coordinates using hyperbolic partial differential equations. SIAM Journal on Scientific Computing 1(4), 431–437 (1979)

    Google Scholar 

  2. Visbal, M., Knight, D.: Generation of orthogonal and nearly orthogonal coordinates with grid control near boundaries. AIAA Journal 20(3), 305–306 (1982)

    Article  MATH  Google Scholar 

  3. Prokopov, G.P.: Some general issues of grid generation algorithms. VANT. Ser. Mathematical modelling of physical processes 1, 37–46 (1998) (in Russian)

    Google Scholar 

  4. Winslow, A.M.: Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 1, 149–172 (1966)

    Article  MathSciNet  Google Scholar 

  5. Godunov, S.K., Prokopov, G.P.: The use of moving meshes in gasdynamics computations. USSR Comput. Maths. Math. Phys. 12(2), 182–191 (1972)

    Article  MathSciNet  Google Scholar 

  6. Thompson, J.F., Mastin, C.W., Thames, F.C.: Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J. Comp. Phys. 15, 299–319 (1974)

    Article  Google Scholar 

  7. Radó, T.: Aufgabe 41, Jahresber. Deutsche Math.-Verein 35, 49 (1926)

    Google Scholar 

  8. Roache, P.J., Steinberg, S.: A new approach to grid generation using a variational formulation. In: AIAA 7th Computational Fluid Dynamics Conference, Cincinnati, OH, AIAA Paper, No. 85-1527-CP (July 1985)

    Google Scholar 

  9. Knupp, P., Luczak, R.: Truncation error in grid generation: a case study. Numer. Meth. Part. Dif. Eq. 11, 561–571 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Azarenok, B.N.: Generation of structured difference grids in two-dimensional nonconvex domains using mappings. Comput. Math. Math. Phys. 49(5), 797–809 (2009)

    Article  MathSciNet  Google Scholar 

  11. Azarenok, B.N.: On 2D structured mesh generation by using mappings. Numerical Methods for Partial Differential Equations. Wiley InterScience, Hoboken (2010), www.interscience.wiley.com , 10.1002/num.20570

    Google Scholar 

  12. Thompson, J.F., Thames, F.C., Mastin, C.W.: TOMCAT - a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies. J. Comp. Phys. 24, 274–320 (1977)

    Article  MATH  Google Scholar 

  13. Spekreijse, S.P.: Elliptic grid generation based on Laplace equations and algebraic transformations. J. Comput. Phys. 118, 38–61 (1995)

    Article  MATH  Google Scholar 

  14. Ivanenko, S.A.: Control of cell shape in the construction of a grid. Comput. Math. Math. Phys. 40(11), 1596–1616 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Sidorov, A.F., Shabashova, T.I.: On one method of computation of optimal difference grids for multidimensional domains. Chisl. Metody Mechaniky Sploshnoy Sredy. 12, 106–123 (1981) (in Russian)

    Google Scholar 

  16. Steger, J.L., Sorenson, R.L.: Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations. J. Comp. Physics 33, 405–410 (1979)

    Article  MathSciNet  Google Scholar 

  17. Kaul, U.K.: New boundary conditions for elliptic systems used in grid generation problems. J. Comp. Physics. 189, 476–492 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Boehm, W.: Bézier presentation of airfoils. Computer Aided Geometric Design. 4, 17–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azarenok, B. (2010). Mesh Construction with Prescribed Properties Near Boundary. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics