Skip to main content

A Study on Using Hierarchical Basis Error Estimates in Anisotropic Mesh Adaptation for the Finite Element Method

  • Conference paper
Proceedings of the 19th International Meshing Roundtable

Abstract

A common approach for generating an anisotropic mesh is the M-uniform mesh approach where an adaptive mesh is generated as a uniform one in the metric specified by a given tensor M. A key component is the determination of an appropriate metric which is often based on some type of Hessian recovery. This study discusses the use of a hierarchical basis error estimator for the development of an anisotropic metric tensor needed for the adaptive finite element solution. A global hierarchical basis error estimator is employed to obtain reliable directional information. Numerical results for a selection of different applications show that the method performs comparable with existing metric tensors based on Hessian recovery and can provide even better adaptation to the solution if applied to problems with gradient jumps and steep boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Generation of quasi-optimal meshes based on a posteriori error estimates. In: Proceedings of the 16th International Meshing Roundtable, pp. 139–148 (2008)

    Google Scholar 

  2. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates. In: Proceedings of the 18th International Meshing Roundtable, pp. 595–610 (2009)

    Google Scholar 

  3. Agouzal, A., Lipnikov, K., Vassilevski, Y.: Hessian-free metric-based mesh adaptation via geometry of interpolation error. Comput. Math. Math. Phys. 50(1), 124–138 (2010)

    Article  Google Scholar 

  4. Agouzal, A., Vassilevski, Y.V.: Minimization of gradient errors of piecewise linear interpolation on simplicial meshes. Comput. Methods Appl. Mech. Engrg. 199(33-36), 2195–2203 (2010)

    Article  Google Scholar 

  5. Apel, T., Grosman, S., Jimack, P.K., Meyer, A.: A new methodology for anisotropic mesh refinement based upon error gradients. Appl. Numer. Math. 50(3-4), 329–341 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bank, R.E., Kent Smith, R.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bildhauer, M.: Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics, vol. 1818. Springer, Heidelberg (2000)

    Google Scholar 

  10. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elements in Analysis and Design 25(1-2), 61–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borouchaki, H., George, P.L., Mohammadi, B.: Delaunay mesh generation governed by metric specifications. Part II. Applications. Finite Elem. Anal. Des. 25(1-2), 85–109 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cao, W., Huang, W., Russell, R.D.: Comparison of two-dimensional r-adaptive finite element methods using various error indicators. Math. Comput. Simulation 56(2), 127–143 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Castro-Díaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaption for flow simulations. Int. J. Numer. Meth. Fluids 25(4), 475–491 (1997)

    Article  MATH  Google Scholar 

  14. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2(1), 17–31 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. Impact Comput. Sci. Engrg. 1(1), 3–35 (1989)

    Article  MATH  Google Scholar 

  16. Dobrowolski, M., Gräf, S., Pflaum, C.: On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8, 36–45 (1999)

    MATH  MathSciNet  Google Scholar 

  17. Dolejší, V.: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1(3), 165–178 (1998)

    Article  MATH  Google Scholar 

  18. Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91, 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Frey, P.J., George, P.-L.: Mesh Generation, 2nd edn. John Wiley & Sons, Inc., Hoboken (2008)

    MATH  Google Scholar 

  21. Hecht, F.: BAMG: Bidimensional Anisotropic Mesh Generator (2006), Source code: http://www.ann.jussieu.fr/~hecht/ftp/bamg/

  22. Huang, W.: Measuring mesh qualities and application to variational mesh adaptation. SIAM J. Sci. Comput. 26(5), 1643–1666 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204(2), 633–665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Huang, W., Kamenski, L., Lang, J.: A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229(6), 2179–2198 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang, W., Kamenski, L., Li, X.: Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases. Canad. Appl. Math. Quart. (to appear, 2010) arXiv:1006.0191

    Google Scholar 

  26. Huang, W., Li, X.: An anisotropic mesh adaptation method for the finite element solution of variational problems. Finite Elem. Anal. Des. 46(1-2), 61–73 (2010)

    Article  MathSciNet  Google Scholar 

  27. Huang, W., Sun, W.W.: Variational mesh adaptation II: error estimates and monitor functions. J. Comput. Phys. 184(2), 619–648 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kamenski, L.: Anisotropic Mesh Adaptation Based on Hessian Recovery and A Posteriori Error Estimates. PhD thesis, TU Darmstadt (2009)

    Google Scholar 

  29. Li, X., Huang, W.: An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems. J. Comput. Phys. (to appear, 2010) arXiv:1003.4530

    Google Scholar 

  30. Ovall, J.S.: The dangers to avoid when using gradient recovery methods for finite element error estimation and adaptivity. Technical Report 6, Max Planck Institute for Mathematics in the Sciences (2006)

    Google Scholar 

  31. Ovall, J.S.: Function, gradient, and Hessian recovery using quadratic edge-bump functions. SIAM J. Numer. Anal. 45(3), 1064–1080 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pardo, D., Demkowicz, L.: Integration of hp-adaptivity and a two-grid solver for elliptic problems. Comput. Methods Appl. Mech. Engrg. 195(7-8), 674–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, Z., Naga, A.: A new finite element gradient recovery method: Superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Engrg. 33(7), 1331–1364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Engrg. 33(7), 1365–1382 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamenski, L. (2010). A Study on Using Hierarchical Basis Error Estimates in Anisotropic Mesh Adaptation for the Finite Element Method. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics