Skip to main content

Receding Front Method: A New Approach Applied to Generate Hexahedral Meshes of Outer Domains

  • Conference paper
Proceedings of the 19th International Meshing Roundtable

Abstract

Two of the most successful methods to generate unstructured hexahedral meshes are the grid-based methods and the advancing front methods. On the one hand, the grid-based methods generate high quality elements in the inner part of the domain using an inside-outside approach. On the other hand, advancing front methods generate high quality hexahedra near the boundary using an outside-inside approach. In this paper we propose the receding front method, an original approach that combines the advantages of both methodologies: we use an inside-outside mesh generation approach by means of a reversed front advance. We apply this approach to mesh outer domains. To reproduce the shape of the boundaries, we first pre-compute the mesh fronts by combining two solutions of the Eikonal equation on a tetrahedral reference mesh. Then, to generate high quality elements, we expand the quadrilateral surface mesh of the inner body towards the unmeshed external boundary using the pre-computed fronts as a guide. Further research is under way in order to apply the proposed method to more complicated geometries.

This work was partially sponsored by the Spanish Ministerio de Ciencia e Innovación under grants DPI2007-62395, BIA2007-66965 and CGL2008-06003-C03-02/CLI and by Universitat Politècnica de Catalunya (UPC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owen, S.J.: A survey for unstructured mesh generation technology. In: 7th International Meshing Roundtable, pp. 239–267 (1998)

    Google Scholar 

  2. Blacker, T.D.: Automated conformal hexahedral meshing constraints, challenges and opportunities. Engineering with Computers 17(3), 201–210 (2001)

    Article  MATH  Google Scholar 

  3. Tautges, T.J.: The generation of hexahedral meshes for assembly geometry: survey and progress. International Journal for Numerical Methods in Engineering 50(12), 2617–2642 (2001)

    Article  MATH  Google Scholar 

  4. Baker, T.J.: Mesh generation: Art or science? Progress in Aerospace Sciences 41(1), 29–63 (2005)

    Article  Google Scholar 

  5. Shepherd, F.J.: Topologic and geometric constraint-based hexahedral mesh generation. PhD thesis, The University of Utah (2007)

    Google Scholar 

  6. Roca, X.: Paving the path towards automatic hexahedral mesh generation. PhD thesis, Universitat Politècnica de Catalunya (2009)

    Google Scholar 

  7. Schneiders, R., Bünten, R.: Automatic generation of hexahedral finite element meshes. Computer Aided Geometric Design 12(7), 693–707 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schneiders, R.: A grid-based algorithm for the generation of hexahedral element meshes. Engineering with Computers 12(3), 168–177 (1996)

    Article  Google Scholar 

  9. Zhang, Y., Bajaj, C., Sohn, B.S.: 3D finite element meshing from imaging data. Computer Methods in Applied Mechanics and Engineering 194(48-49), 5083–5106 (2005)

    Article  MATH  Google Scholar 

  10. Zhang, Y., Bajaj, C.: Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Computer Methods in Applied Mechanics and Engineering 195(9-12), 942–960 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Blacker, T.D., Meyers, R.J.: Seams and wedges in Plastering: a 3-D hexahedral mesh generation algorithm. Engineering with computers 9(2), 83–93 (1993)

    Article  Google Scholar 

  12. Staten, M.L., Owen, S.J., Blacker, T.D.: Unconstrained paving and plastering: A new idea for all hexahedral mesh generation. In: 14th International Meshing Roundtable (2005)

    Google Scholar 

  13. Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D., Stupazzini, M., Shimada, K.: Unconstrained plastering-hexahedral mesh generation via advancing-front geometry decomposition. International Journal for Numerical Methods in Engineering 81(2), 135–171 (2009)

    Google Scholar 

  14. Kowalski, N., Ledoux, F., Staten, M.L., Owen, S.J.: Fun sheet matching - automatic generation of block-structured hexahedral mesh using fundamental sheets. In: 10th USNCCM (2009)

    Google Scholar 

  15. Roca, X., Sarrate, J.: Local dual contributions: Representing dual surfaces for block meshing. International Journal for Numerical Methods in Engineering 83(6), 709–740 (2010)

    Google Scholar 

  16. Meshkat, S., Talmor, D.: Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh. International Journal for Numerical Methods in Engineering 49(1-2), 17–30 (2000)

    Article  MATH  Google Scholar 

  17. Owen, S.J., Saigal, S.: H-Morph: an indirect approach to advancing front hex meshing. International Journal for Numerical Methods in Engineering 49(1-2), 289–312 (2000)

    Article  MATH  Google Scholar 

  18. Sethian, J.A.: Curvature flow and entropy conditions applied to grid generation. J. Comp. Phys (1994)

    Google Scholar 

  19. Wang, Y., Guibault, F., Camarero, R.: Eikonal equation-based front propagation for arbitrary complex configurations. International Journal for Numerical Methods in Engineering 73(2), 226–247 (2007)

    Article  MathSciNet  Google Scholar 

  20. Xia, H., Tucker, P.G.: Finite volume distance field and its application to medial axis transforms. International Journal for Numerical Methods in Engineering 82(1), 114–134 (2009)

    MathSciNet  Google Scholar 

  21. Xia, H., Tucker, P.G.: Distance solutions for medial axis transform. In: Proceedings of the 18th International Meshing Roundtable, pp. 247–265 (2009)

    Google Scholar 

  22. Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Carreras, J.: Refinament conforme per malles de quadrilàters i hexàedres. Master’s thesis, Facultat de Matemàtiques i Estadística. Universitat Politècnica de Catalunya (2008)

    Google Scholar 

  24. Thompson, J.F.: Handbook of Grid Generation. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  25. Roca, X., Sarrate, J., Ruiz-Gironés, E.: A graphical modeling and mesh generation environment for simulations based on boundary representation data. In: Congresso de Métodos Numéricos em Engenharia (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roca, X., Ruiz-Gironés, E., Sarrate, J. (2010). Receding Front Method: A New Approach Applied to Generate Hexahedral Meshes of Outer Domains. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics