Skip to main content

Sealing Faceted Surfaces to Achieve Watertight CAD Models

  • Conference paper
Proceedings of the 19th International Meshing Roundtable

Summary

Solid modeling engines are capable of faceting CAD models but may facet each face independent of adjacent faces. Regions of the resulting model have gaps between faces of their boundaries. An algorithm is described to seal faceted CAD models such that the boundary of neighboring faces has the same discretization along their shared edges. The algorithm works by sealing skin edges of geometric face faceting to geometric model edge facets, using vertex-vertex and vertex-edge contraction. Ten intricate CAD models of moderate to high complexity are tested with a range of facet tolerances. The algorithm succeeds in creating watertight models in most cases, with failures only at extreme values of facet tolerance and/or in the presence of geometric features which are outside the normal features encountered in most models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3D Systems Inc. Stereolithography Interface Specification (1988)

    Google Scholar 

  2. Bhet, E., Cuilliere, J.C., Trochu, F.: Generation of a Finite Element MESH from Stereolithography (STL) Files. Computer-Aided Design 34(1), 1–17 (2002)

    Article  Google Scholar 

  3. Rypl, D., Bittnar, Z.: Generation of Computational Surface Meshes of STL Models. Journal of Computational and Applied Mathematics, Special Issue on Computational and Mathematical Methods in Science and Engineering (CMMSE 2004) 192(1), 148–151 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Tautges, T.J., Wilson, P.P.H., Kraftcheck, J.A., Smith, B.M., Henderson, D.L.: Acceleration Techniques for Direct Use of CAD-Based Geometries in Monte Carlo Radiation Transport. In: Proc. International Conference on Mathematics, Computational Methods, and Reactor Physics (2009)

    Google Scholar 

  5. Spatial Corporation. Spatial Product Documentation (2009), http://doc.spatial.com/index.php/Refinements#Surface_Tolerance

  6. Open CASCADE technology, 3D modeling & numerical simulation, http://www.opencascade.org/

  7. Sheffer, A., Blacker, T.D., Bercovier, M.: Virtual Topology Operators for Meshing. International Journal of Computational Geometry and Applications 10(2) (2000)

    Google Scholar 

  8. Sandia National Laboratories. CUBIT Geometry and Mesh Generation Toolkit (2010), http://cubit.sandia.gov

  9. Tautges, T.J.: The Common Geometry Module (CGM): a Generic, Extensible Geometry Interface. Engineering with Computers 17(3), 299–314 (2001)

    Article  MATH  Google Scholar 

  10. Bischoff, S., Kobbelt, L.: Structure Preserving CAD Model Repair. Eurographics 24(3), 527–536 (2005)

    Google Scholar 

  11. Ju, T.: Fixing Geometric Errors on Polygonal Models: A Survey. Journal of Computer Science and Technology 24(1), 19–29 (2009)

    Article  Google Scholar 

  12. Edelsbrunner, H., Mücke, E.: Three-Dimensional Alpha Shapes. ACM Transactions on Graphics 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  13. Amenta, N., Bern, M., Kamvysselis, M.: A New Voronoi-Based Surface Reconstruction Algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)

    Chapter  Google Scholar 

  14. Murali, T.M., Funkhouser, T.A.: Consistent Solid and Boundary Representations from Arbitrary Polygonal Data. In: I3D 1997: Proceedings of the 1997 symposium on Interactive 3D graphics, p. 155. ACM, New York (1997)

    Chapter  Google Scholar 

  15. Ju, T.: Robust Repair of Polygonal Models. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers, pp. 888–895. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Bohn, J.H., Wozny, M.J.: A Topology-Based Approach for Shell Closure. Geometric Modeling for Product Realization, 297–319 (1993)

    Google Scholar 

  17. Barequet, G., Sharir, M.: Filling Gaps in the Boundary of a Polyhedron. Computer Aided Geometric Design 12, 207–229 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Barequet, G., Kumar, S.: Repairing CAD Models. In: VIS 1997: Proceedings of the 8th Conference on Visualization. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  19. Klincsek, G.T.: Minimal Triangulations of Polygonal Domains. Combinatorica 79 (1980)

    Google Scholar 

  20. Sheng, X., Meier, I.R.: Generating Topological Structures for Surface Models. IEEE Computer Graphics and Applications 15(6), 35–41 (1995)

    Article  Google Scholar 

  21. Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Converting Sets of Polygons to Manifold Surfaces by Cutting and Stitching. In: VIS 1998: Proceedings of the Conference on Visualization, pp. 383–390. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  22. Borodin, P., Novotni, M., Klein, R.: Progressive Gap Closing for Mesh Repairing. Advances in Modelling, Animation and Rendering, 201–211 (2002)

    Google Scholar 

  23. International Meshing Roundtable. Stitching and Filling: Creating Conformal Faceted Geometry (2005)

    Google Scholar 

  24. Kahlesz, F., Balázs, Á., Klein, R.: Multiresolution Rendering by Sewing Trimmed NURBS surfaces. In: SMA 2002: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, pp. 281–288. ACM, New York (2002)

    Chapter  Google Scholar 

  25. Busaryev, O., Dey, T.K., Levine, J.A.: Repairing and Meshing Imperfect Shapes with Delaunay Refinement. In: SPM 2009: SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 25–33. ACM, New York (2009)

    Chapter  Google Scholar 

  26. Chong, C.S., Kumar, A.S., Lee, H.P.: Automatic Mesh-Healing Technique for Model Repair and Finite Element Model Generation. Finite Elements in Analysis and Design 43, 1109–1119 (2007)

    Article  Google Scholar 

  27. Ruppert, J.: A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. Journal of Algorithms 18(3), 548–594 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tautges, T.J., Meyers, R., Merkley, K., Stimpson, C., Ernst, C.: MOAB: A Mesh-Oriented Database. Technical report, Sandia National Laboratories, SAND2004-1592 (2004)

    Google Scholar 

  29. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, B.M., Tautges, T.J., Wilson, P.P.H. (2010). Sealing Faceted Surfaces to Achieve Watertight CAD Models. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics