Skip to main content

In-Lab Evaluation of Composite Insulators following their Withdrawal from the Network

  • Chapter
Silicone Composite Insulators

Part of the book series: Power Systems ((POWSYS))

  • 3393 Accesses

Abstract

This chapter is dedicated to the in-lab evaluation of aged, “old” or failed line composite insulators. The term in-lab evaluation is used, because the state of the insulators or the insulator strings/sets is evaluated as off-line diagnosis, which is different to the inspection method of an on-line diagnosis. It describes various methods, philosophies and resources that make it possible to evaluate their technical state and thus estimate the remaining time of use of composite insulators that are the same type as those being tested. The composite insulators to be evaluated are specifically withdrawn from the line in order to obtain representative results for this generation of insulators. Frequently, analyses are also conducted if old composite insulators are available as part of scheduled replacement schemes. If a certain behaviour has already been identified as being critical to operations, it is recommended to evaluate at least ten insulators. If the line route includes various pollution zones or loads that are otherwise different, a sufficient number of each insulator must be inspected representative for the corresponding in situ conditions. When withdrawing insulators from the network, it is important to ensure that the installation conditions are adequately documented and can be clearly assigned. In many cases, the manufacturer of the composite insulators can provide additional data to identify the product (technical state of a particular generation of insulators, production date, material batches, etc.). In critical cases, it is recommended to perform the evaluation in conjunction with the manufacturer and a specialist independent laboratory. The identification of intensive ageing phenomena that effectively signify the end of service life for an insulator can prompt the withdrawal of other insulators of the same type/generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANSI:

American National Standards Institute

ASDD:

Apparent salt deposit density

CEPS:

Czech power utility

CIGRE:

Conseil International Des Grands Reseaux Electriques (International Council For Large Electric Systems)

DC:

Direct current

DSC:

Differential scanning calorimetry

E-CR or ECR-Fibres:

Corrosion-resistant glass fibre for electrotechnical applications

EDS:

Every day stress

E-Glass:

Glass fibre for electrotechnical applications

ELECTRA:

Professional journal of CIGRE

EPDM:

Ethylene propylene diene monomer (insulant)

EPRI:

Electric Power Research Institute

ESDD:

Equivalent salt deposit density

ESKOM:

South African power utility

EVA:

Ethylene vinyl acetate

EVU:

Power utility

FMEA:

Failure mode and effects analysis

FTIR:

Fourier transform infrared spectroscopy

GFK:

Glass-fibre reinforced plastic

HT:

Hydrophobicity transfer

HTM:

Hydrophobicity transfer mechanism (transfer procedure)

HTV:

High temperature vulcanising

IEC:

International Electrotechnical Commission

IR:

Infrared

k:

Index of service experience

MTBF:

Mean time between failure

MTTR:

Mean time to repair

NSDD:

Non-soluble deposit density

SEM:

Scanning electron microscope

RTE:

French power utility

RTV:

Room temperature vulcanising

SML:

Specified mechanical load (nominal force of insulator)

SR:

Silicone rubber

T:

Time of use

TE:

Partial discharge

TGA:

Thermo-gravimetric analysis

Triton-X:

Wetting agent

UV:

Ultra-violet

WC 1..7:

Wettability class

XRF:

X-ray fluorescence

XRD:

X-ray diffraction

na:

Number of failures

nb:

Total number of insulators in service

nE:

Number of insulators still in service

λ:

Failure rate

\( \hat{\lambda } \) :

Empirical failure rate

References

  1. State of the Art Report On behalf of Study Committees 15 and 33 presented by Working Group 33/15.08 (1990) Dielectric diagnosis of electrical equipment for AC applications and its effects on insulation coordination. CIGRE Technical Brochure 059

    Google Scholar 

  2. Schmuck F, Seifert J, Gutman I, Pigini A (2012) Assessment of the condition of overhead line composite insulators. CIGRE Session 2012, Paris, Paper D2-214

    Google Scholar 

  3. CIGRE Working Group B2.21 (2011) Guide for the assessment of composite insulators in the laboratory after their removal from service. Technical Brochure 481

    Google Scholar 

  4. CIGRE Working Group B2.03 (2006) Guide for the assessment of old cap and pin and long rod transmission line insulators made of porcelain or glass: what to do and when to replace. Technical Brochure 306

    Google Scholar 

  5. Papailiou KO (1999) Grenzflächen bei Silikon-Verbundisolatoren. (Bulletin SEV/VSE 21)

    Google Scholar 

  6. Gubanski SM, Derfalk A, Andersson J, Hillborg H (2007) Diagnostic methods for outdoor polymeric insulators. IEEE Trans Dielectr Electr Insul 14(5), October

    Google Scholar 

  7. CIGRE Working Group B2.03 (2007) Guidance for the establishment of naturally polluted insulator testing stations. Technical Brochure 333

    Google Scholar 

  8. EPRI Database, presented at the WG-Meeting of CIGRE B2.21 in Winterbach 2008, update in 2011

    Google Scholar 

  9. Kuhl M (2001) FRP rods for brittle fracture resistant composite insulators. IEEE Trans Dielectr Electr Insul 8(2), April

    Google Scholar 

  10. Montesinos J, Gorur RS, Mobasher B, Kingsbury D (2002) Mechanism of brittle fracture in nonceramic insulators. IEEE Trans Dielectr Electr Insul 9(2), April

    Google Scholar 

  11. Montesinos J, Gorur RS, Mobasher B, Kingsbury D (2002) Brittle fracture in nonceramic insulators: electrical aspects of microscopic flaws in glass reinforced plastic (GRP) rods. IEEE Trans Dielectr Electr Insul 9(2), April

    Google Scholar 

  12. de Tourreil C, Schmuck F on behalf of CIGRE Working Group B2.03 (2004) Brittle fractures of composite insulators—field experience, occurrence and risk assessment. ELECTRA 214, June

    Google Scholar 

  13. de Tourreil C, Schmuck F on behalf of CIGRE Working Group B2.03 (2004) Brittle fractures of composite insulators—failure mode chemistry, influence of resin variations and search for a simple insulator core evaluation test method. ELECTRA 215, August

    Google Scholar 

  14. Chughtai AR, Smith DM, Kumosa LS, Kumosa M (2004) FTIR analysis of non-ceramic composite insulators. IEEE Trans Dielectr Electr Insul 11(4), August

    Google Scholar 

  15. Kumosa M, Kumosa L, Armentrout D (2005) Failure analyses of nonceramic insulators part 1: brittle fracture characteristics. IEEE Electr Insul Mag 21(3), May/June

    Google Scholar 

  16. Kumosa M, Kumosa L, Armentrout D (2005) Failure analyses of nonceramic insulators: part 2: the brittle fracture model and failure prevention. IEEE Electrical Insulation Magazine 21(4), July/August

    Google Scholar 

  17. Kumosa LS, Kumosa MS, Armentrout DL (2005) Resistance to brittle fracture of glass reinforced polymer composites used in composite (nonceramic) insulators. IEEE Trans Power Delivery 20(4), October

    Google Scholar 

  18. IEC 62662 Ed1 (2008) Guidance for production, testing and diagnostics of polymer insulators with respect to brittle fracture of core materials

    Google Scholar 

  19. CIGRE SC 22 WG 03.01 (1990) Worldwide experience with HV composite insulators. ELECTRA 130, December

    Google Scholar 

  20. CIGRE WG 22.03 (2000) Worldwide service experience with composite insulators. ELECTRA 191, August

    Google Scholar 

  21. Bonzano R, Ricca M, Garbagnati E, Marrone G, Pigini A (1991) Experimental research on the behaviour of HV cap and pin insulator strings with failed units. Eur Trans Electr Power 1(1), January/February

    Google Scholar 

  22. Mishra AP, Gorur RS, Venkataraman S, Kingsbury D (2006) Condition assessment of porcelain and toughened glass insulators from residual strength tests. Annual Report Conference on Electrical Insulation and Dielectric Phenomena

    Google Scholar 

  23. Rawat A, Gorur RS (2008) Electrical strength reduction of porcelain suspension insulators on AC transmission lines. Annual Report Conference on Electrical Insulation Dielectric Phenomena

    Google Scholar 

  24. Zhicheng G, Xiaoxing W, Zhidong J, Ruobin Z (2011) Application and research of composite insulator in China. INMR Symposium 2011 in Seoul, South Korea

    Google Scholar 

  25. Vosloo WL, Macey RE, De Tourreil C (2004) Outdoor high voltage insulators. Crown Publications, Johannesburg

    Google Scholar 

  26. Guide Field (2009) Visual inspection of polymer insulators. EPRI, Palo Alto, p 1020289

    Google Scholar 

  27. Seifert J, Bärsch R (2006) Bewertung des Designs von Silikon-Verbundisolatoren unter dem Aspekt der Isolierstoffoberflächen und Fremdschichtverhaltens. RCC-Fachtagung “Werkstoffe für Isolatoren, Überspannungsableiter, Kabelgarnituren, Schaltgeräte, Berlin April, Tagungsband S. 113–124

    Google Scholar 

  28. Seifert J, Bärsch R (2007) Design evaluation of silicone rubber composite lnsulators under the aspect of surface pollution stress, 15. International symposium on high voltage engineering, Ljubljana, Slovenia, August 27–31, proceedings

    Google Scholar 

  29. Seifert JM, Bärsch R, Vosloo WL (2008) Dimensioning of the housing profile of silicone rubber composite lnsulators for harsh marine pollution conditions, CIGRE Session 2008, Paris, paper D1—303

    Google Scholar 

  30. IEC 61109 Ed. 2 (2008) Composite suspension and tension insulators for a.c. overhead lines with a nominal voltage greater than 1 000 V—Definitions, test methods and acceptance criteria

    Google Scholar 

  31. ANSI 29.11 1989 (R 1996) (1989) For composite insulators - test methods

    Google Scholar 

  32. IEC TS 62073 Ed. 1 (2003) Guidance on the measurement of wettability of insulator surfaces

    Google Scholar 

  33. STRI-Guide 1, 92/1 (1992) Hydrophobicity classification guide

    Google Scholar 

  34. IEC 60383-1 Ed 4 (1993) Insulators for overhead lines with a nominal voltage above 1000 V—part 1: ceramic or glass insulator units for a.c. systems—definitions, test methods and acceptance criteria

    Google Scholar 

  35. Gutman I, Solomonik EA, Solomatov VN, Yashin YuN (1993) Operation and field tests of overhead line composite insulators with silicone rubber cover. 8th International symposium on high voltage engineering, Yokohama, Japan, 23–27 August, 47.13

    Google Scholar 

  36. Berlijn S, Halsan K, Gutman I, Dernfalk A (2009) Assessing ten years of service experience with composite line insulators at HVDC. World Congress and Exhibition on Insulators, Arresters and Bushings, Crete, 11–13 May

    Google Scholar 

  37. Gayvoronski A (2008) The damages of composite insulators and their on-line diagnostics in service. IWD 047-2008. Presented at CIGRE WG Meeting

    Google Scholar 

  38. CIGRE Task Force 33.04.01 (2000) Polluted insulators: a review of current knowledge. Technical Brochure 158, June

    Google Scholar 

  39. IEC 60507 Ed 2 (1991) Artificial pollution tests on high-voltage insulators to be used on a.c. systems

    Google Scholar 

  40. Gutman I, Dernfalk A (2010) Pollution tests for polymeric insulators made of hydrophobicity transfer materials. IEEE Trans Dielectr Electr Insul 17(2):384–393

    Article  Google Scholar 

  41. Gutman I, Halsan K, Seifert J, Vosloo W (2011) Service experience on pollution and ageing of DC line composite insulators: service/field analysis and laboratory testing. World Congress and Exhibition on Insulators, Arresters and Bushings, Seoul, Korea, 17–20 April

    Google Scholar 

  42. Bärsch R, Kuhl M (1999) Betriebserfahrungen und Untersuchungen an Kunststoffisolatoren in einer 20 kV-Leitung auf der Insel Nordstrand. ETG-Fachbericht 76:249–257

    Google Scholar 

  43. Huiber W, Papailiou KO, Peter M, Schmuck F (2001) Increased installation performance and application solutions using composite insulators—a manufacturerer`s philosophy. INMR World Insulator Congress 2001 Shanghai

    Google Scholar 

  44. Papailiou KO, Peter M, Fluri W, Schmuck F (2003) A review of material development, recent 420 kV braced line post designs and long-term evaluation of composite insulators in Silicone rubber technology. INMR Insulator Symposium 2003 Marbella

    Google Scholar 

  45. CIGRE WG C4.03.03 (2009) Proposal for the round robin pollution test for polymeric insulators, October

    Google Scholar 

  46. IEC 61621 Ed. 1 (1997) Dry, solid insulating materials—Resistance test to high-voltage, low-current arc discharges

    Google Scholar 

  47. IEC 60587 Ed. 3 (2007) Electrical insulating materials used under severe ambient conditions—test methods for evaluating resistance to tracking and erosion

    Google Scholar 

  48. IEC 62217 Ed 1 (2005) Polymeric insulators for indoor and outdoor use with a nominal voltage >1 000 V—general definitions, test methods and acceptance criteria

    Google Scholar 

  49. ISO 4287 (1997) Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters

    Google Scholar 

  50. Bärsch R (2003) Bewertung der Hydrophobie sowie des Kriechstromverhaltens von Silikonelastomeren für Hochspannungs-Freiluftisolatoren. ETG-Fachbericht 93:97–108

    Google Scholar 

  51. Cervinka R, Bärsch R, Exl F, Kindersberger J, Winter H-J (2008) Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem dynamischen Tropfen-Prüfverfahren ETG-Tagung

    Google Scholar 

  52. CIGRE WG D1.14 (2010) Evaluation of dynamic hydrophobicity properties of polymeric materials for non-ceramic outdoor insulation—retention and transfer of hydrophobicity. Technical Brochure 442, December

    Google Scholar 

  53. IEC/TS 60815-1 Ed. 1 (2008) Selection and dimensioning of high-voltage insulators intended for use in polluted conditions—part 1: definitions, information and general principles

    Google Scholar 

  54. Seifert J, Zembsch T (2007) Long-term in-service pollution performance of composite insulators in arid and coastal areas. 2007 GCC CIGRE Conference, Dubai, November, U.A.E

    Google Scholar 

  55. Hayashi T (2008) Pollution accumulation and live-line washing withstand voltage performance of silicone rubber composite insulators. B3. Preferential Subject PS1, Question 9, CIGRE

    Google Scholar 

  56. Kindersberger J, Kuhl M (1989) Effect of hydrophobicity on insulator performance, 6th ISH New Orleans

    Google Scholar 

  57. Gutman I, Wieck H, Windmar D, Stenström L, Gustavsson D (2007) Pollution measurements to access the performance of naturally exposed silicone rubber composite insulators. IEEE Trans Fundam Mater 127(9), pp 513–518

    Article  Google Scholar 

  58. CIGRE SC 22 WG 22.03 (1992) Guide for the identification of brittle fracture of composite insulators FRP rod. ELECTRA 143

    Google Scholar 

  59. IEEE Task Force Report (2002) Brittle facture in nonceramic insulators. IEEE Trans Power Delivery, 17(3), July

    Google Scholar 

  60. Ansorge S, Camendzind A, Pratsinis SE, Ammann M, Schmuck F, Papailiou KO (2008) Evaluation of silicone rubber housing interfaces after service exposure and performance improvements by nanofillers enriched silicone rubbers. Paper B2-208, CIGRE

    Google Scholar 

  61. Schmuck F, Aitken S, Papailiou KO (2010) A proposal for intensified inspection and acceptance tests of composite insulators as an addition to the guidelines of IEC 61109 Ed. 2, 2008 and IEC 61952 Ed. 2, 2008. IEEE Trans Dielectr Electr Insul 17(2), April

    Google Scholar 

  62. Kocher M (1993) Experience with silicone composite insulators in the tunnels of BLS Lötschberg. Railway Technology

    Google Scholar 

  63. Djafri S (1995) Zur getrennten Bewertung der Einflussgrössen auf den Fremdschichtüberschlag von Isolatoren bei Wechselspannung. Dissertation TH Zittau

    Google Scholar 

  64. Pilling J, Berndt L (1991) Flashover voltage and flashover current of polluted insulators. 7th ISH Dresden, August 1991, Paper 43.12

    Google Scholar 

  65. Sklenicka V, Zeman I (2001) Utilization and service experience with composite insulators in Czech power system. In: Proceedings of world congress and exhibition on insulators, arresters and bushings—Shanghai, November

    Google Scholar 

  66. Kissling F, Puschmann R, Schmieder A, Schmidt PA (1998) Fahrleitungen elektrischer Bahnen: Planung, Berechnung, Ausführung. (2.Auflage). Vieweg + Teubner, Wiesbaden

    Google Scholar 

  67. Meyna A, Pauli B (2003) Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik—quantitative Bewertungsverfahren. Hanser Verlag, Praxisreihe Qualitätswissen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papailiou, K., Schmuck, F. (2013). In-Lab Evaluation of Composite Insulators following their Withdrawal from the Network. In: Silicone Composite Insulators. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15320-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15320-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15319-8

  • Online ISBN: 978-3-642-15320-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics