Skip to main content

General Information About Piezoelectric Sensors

  • Chapter
  • First Online:
Piezoceramic Sensors

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

The history of piezoelectricity development totals more than 120 years. In 1880, Pierre and Jacques Curie found that under pressure some materials develop surface electrical charges. Subsequently, this effect was named the “piezoeffect”; electricity caused by mechanical pressure was called “piezoelectricity”, and materials (quartz, turmalin, segnet salt, etc.) in which there is this phenomenonwere called “piezoelectric” [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Curie, P. Curie, Développement, par pression, de 1’électricité polaire dans les cristaux hémièdres a faces inclinées. Compt. Rend. 91, 294–295 (1880)

    Google Scholar 

  2. G. Lippmann, Principe de la conversation de 1’électricité. Ann. de Chim. et de Phys. 24, 145–178 (1881)

    Google Scholar 

  3. J. Curie, P. Curie, Contractions et dilatations produits par des tensions électriques dans les cristaux hémièdres a faces inclinées. Compt. Rend. 93, 1137–1140 (1881)

    Google Scholar 

  4. P. Langevin, Précédé et appareil d’émission et de réception des ondes élastiques sous-marines a 1’aide des propriétés piézoélectriques du quartz. Fr. Pat., 1918, 505703

    Google Scholar 

  5. W.G. Cady, Piezoelectric resonator. Proc. Inst. Rad. Eng. 10, 83–114 (1922)

    Google Scholar 

  6. G.W. Pierce, Piezoelectric oscillators applied to the precision measurement of the velocity of sound in air and CO2 at high frequencies. Proc. Amer. Acad. 60, 271–302 (1925)

    Article  Google Scholar 

  7. S.Ya. Sokolov, Way and the device for test of metals. The copyright certificate USSR, 1928, 23246 (in Russian)

    Google Scholar 

  8. P. Debye, F.W. Sears, On the scattering of light by supersonic waves. Proc. Nat. Acad. Sci. 18(6), 409–414 (1932)

    Article  CAS  Google Scholar 

  9. R. Lucas, P. Biquard, Nouvelles propriétés optiques des liquides soumis à des ondes ultrasonores. Compt. Rend. 194, 2132–2134 (1932)

    Google Scholar 

  10. B. Wool, I. Goldman, Dielectric permeability titanium barium depending on intensity in a variation field. Rep. Acad. Sci. USSR 49(3), 179–182 (1945) (in Russian)

    Google Scholar 

  11. B. Wool, I. Goldman, Dielectric permeability titanium metals of 2nd group. Rep. Acad. Sci. USSR 46(4), 154–157 (1945) (in Russian)

    Google Scholar 

  12. W.P. Mason, Barium-titanate ceramic as an electromechanical transducer. Phys. Rev. 74(9), 1134 (1948); Bell. Labor. Rec. 27, 285–289 (1949)

    Google Scholar 

  13. A. Ananyeva, V. Tsarev, Working out not directed sound detector for ultrasonic frequencies, The Report of Acoustic Laboratory of Physical Institute of Academy of Sciences, 1951 (in Russian)

    Google Scholar 

  14. W.P. Mason, Electromechanical Transducers and Wave Filters, 2nd edn. (Van Nostrand, Princeton, 1948)

    Google Scholar 

  15. W.P. Mason, Piezoelectric Crystals and Their Applications to Ultrasonics (Van Nostrand, New York, 1950)

    Google Scholar 

  16. L. Bergman, Zur Frage der Eigenschwingungen piezoelektrischer Quarzplatten bei Erregung in der Dickenschwingung. Ann. d. Phys. 21, 553–563 (1935)

    Google Scholar 

  17. W. Cady, Piezoelectricity. An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover, New York, 1946)

    Google Scholar 

  18. R.N. Thurston, Effects of electrical and mechanical terminating resistances on loss and bandwidth according to the conventional equivalent circuit of a piezoelectric transducer. IRE Trans. Ultrason. Eng. UE-7(1), 16–25 (1960)

    Google Scholar 

  19. G. Katts (ed.), Magnetic and Dielectric Devices, Part 1 (Energiya, Moscow, 1964), p. 416 (in Russian)

    Google Scholar 

  20. M. Onoe, H.P. Tiersten, Resonant frequencies of finite piezoelectric ceramic vibrators with electromechanical coupling. IEEE Trans. Son. Ultrason. Eng. 10(1), 32–39 (1963)

    Google Scholar 

  21. H.P. Tiersten, Thickness vibrations of piezoelectric plates. J. Acoust. Soc. Am. 35, 53–58 (1963)

    Article  Google Scholar 

  22. N. Andreev, Piezoelectric crystals and their application. Electricity 2, 5–13 (1947) (in Russian)

    Google Scholar 

  23. N. Andreev, Calculation of the piezoelectric transmitter, Works All-Union Correspondence Power Institute, 1, pp. 5–12 (1951) (in Russian)

    Google Scholar 

  24. A.A. Harkevich, The Theory of Transducers (Gosenergoizdat, Moscow, 1948) (in Russian)

    Google Scholar 

  25. I. Golyamina, To a question about fluctuations by a thickness of the polarised titanium barium plates. Acous. Mag. 1(1), 40–47 (1955)

    Google Scholar 

  26. V. Domarkas, R.-J. Kažys, Piezoelectric Transducers for Measuring Devices (Mintis, Vilnius, 1974), p. 258 (in Russian)

    Google Scholar 

  27. R.-J. Kažys, Ultrasonic Information Measuring Systems (Mokslas, Vilnus, 1986), p. 216 (in Russian) I ask to write name Kažys

    Google Scholar 

  28. V.V. Malov, Piezoelectric Resonance Sensors (Energoizdat, Moscow, 1989), p. 272 (in Russian)

    Google Scholar 

  29. A.N. Kutsenko, Matrix sensitivity acoustic strain-measuring device, Works of Scientists OPI. – 1995. – 1. – C. 122–124 (in Russian)

    Google Scholar 

  30. L. Gutin, On the theory of piezoelectric effect. Mag. Exp. Theor. Phys. 15(7), 367–379 (1945) (in Russian)

    Google Scholar 

  31. N.A. Shulga, A.M. Bolkisev, Fluctuations of Piezoelectric Bodies. AS USSR. Mechanics Institute (Naukova Dumka, Kyiv, 1990), p. 228 (in Russian)

    Google Scholar 

  32. V.V. Lavrinenko, Piezoelectric Transformer (Energiya, Moscow, 1975), p. 112 (in Russian)

    Google Scholar 

  33. I. Glozman, Piezoceramics (Energiya, Moscow, 1972), p. 288 (in Russian)

    Google Scholar 

  34. S.I. Pugachev (ed.), Piezoelectric Ceramics Transducers: Reference Book (Sudostroenie, Leningrad), p. 256 (in Russian)

    Google Scholar 

  35. M.V. Korolev, A.E. Karpelson, Broadband Ultrasonic (Mashinostroenie, Moscow, 1982),p. 157 (in Russian)

    Google Scholar 

  36. A.F. Ulitko, About definition of factor of electromechanical communication in problems of the established fluctuations in piezoelectric ceramics bodies, Materials IX The All-Union Acoustic Conference, Moscow, Acoustic Institute of Academy of Sciences – C. 27–30 (1977) (in Russian)

    Google Scholar 

  37. I.G. Minaev, A.I. Trofimov, V.M. Sharapov, On a question about linearization target characteristics piezoelectric force measuring transducers, Izv. vyzov USSR – “Priborostroenie”,  3 (1975) (in Russian)

    Google Scholar 

  38. A.I. Trofimov, Piezoceramic Transducers Static Forces (Mashinostroenie, Moscow, 1979),p. 95 (in Russian)

    Google Scholar 

  39. A.E. Kolesnikov, Ultrasonic Measurements (Izdatelstvo Standartov, Moscow, 1982), p. 248 (in Russian)

    Google Scholar 

  40. I.N. Ermolov, The Theory and Practice of Ultrasonic Control (Mashinostroenie, Moscow, 1981), p. 240 (in Russian)

    Google Scholar 

  41. P.G. Dzagupov, A.A. Erofeev, Piezoelectronic Devices of Computer Facilities, Monitoring Systems and Control (Politechnika, St. Petersburg, 1994), p. 608 (in Russian)

    Google Scholar 

  42. V.M. Pluzhnikov, V.S. Semenov, Piezoceramic Firm Schemes (Energiya, Moscow, 1971),p. 168 (in Russian)

    Google Scholar 

  43. P. Gribovskiy, Ceramic Firm Schemes (Energiya, Moscow, 1971), p. 448 (in Russian)

    Google Scholar 

  44. P.G. Pozdnyakov, I.M. Fedotov, V.I. Biryukov, Quartz Resonators with Film Heaters. The Electronic Technics. Scientifically-techn. The Collection, A Series 9 – Radio Components, Release 4 (Energiya, Moscow, 1971), pp. 27–37 (in Russian)

    Google Scholar 

  45. V.M. Sharapov, M.P. Musienko, E.V. Sharapova, in Piezoelectric Sensors, ed. by V.M. Sharapov (Technosphera, Moscow, 2006), p. 632 (in Russian)

    Google Scholar 

  46. E.S. Levshina, P.V. Novitskiy, Electric Measurements of Physical Sizes: (Measuring Transducers). Studies. The Grant for High Schools (Energoatomizdat, Leningrad, 1983), p. 320 (in Russian)

    Google Scholar 

  47. Electric Measurements of Not Electric Sizes (Energiya, Moscow, 1975), p. 576 (in Russian)

    Google Scholar 

  48. Yaffe B., U. Kuk, G. Yaffe. Piezoelectric Ceramics (Mir, Moscow, 1974), p. 288 (in Russian)

    Google Scholar 

  49. V. Sharapov et al., The copyright certificate SU 501306A. Piezoelectric static efforts sensor (in Russian)

    Google Scholar 

  50. Firm prospectuses “Bruel and Kjer”, Nerum, Denmark (1995)

    Google Scholar 

  51. Firm prospectuses “Kistler Instrumente AG”, Winterthur, Switzerland (1996)

    Google Scholar 

  52. Piezoceramic materials. Test methods. Standard of USSR 12370–80, Moscow (1980) (in Russian)

    Google Scholar 

  53. Piezoceramic materials. Types and marks. Technical requirements. Standard of USSR 13927–68, Moscow (1968) (in Russian)

    Google Scholar 

  54. ELPA, in Products of Acoustoelectronics and Piezoceramics, ed. by B.G.M. Parfenov (RIA Delovoy Mir, Zelenograd, 1992), p. 167 (in Russian)

    Google Scholar 

  55. V.I. Vinokurov (ed.), Electric Radio Measurements. The Manual for High Schools (Visshaya Shkola, Moscow, 1976) (in Russian)

    Google Scholar 

  56. O.P. Kramarov, et al., Piezotransducers from metaniobium of lead for ultrasonic resonant thickness gauge. Seminar materials “Radiators and receivers of ultrasonic fluctuations and methods of measurement of acoustic fields”, pp. 27–34 (1966) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Sharapov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharapov, V. (2011). General Information About Piezoelectric Sensors. In: Piezoceramic Sensors. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15311-2_1

Download citation

Publish with us

Policies and ethics