Skip to main content

Low-Temperature Scanning Probe Microscopy

  • Chapter
  • First Online:
Nanotribology and Nanomechanics I

Abstract

This chapter is dedicated to scanning probe microscopy (SPM) operated at cryogenic temperatures, where the more fundamental aspects of phenomena important in the field of nanotechnology can be investigated with high sensitivity under well-defined conditions. In general, scanning probe techniques allow the measurement of physical properties down to the nanometer scale. Some techniques, such as scanning tunneling microscopy and scanning force microscopy, even go down to the atomic scale. Various properties are accessible. Most importantly, one can image the arrangement of atoms on conducting surfaces by scanning tunneling microscopy and on insulating substrates by scanning force microscopy. However, the arrangement of electrons (scanning tunneling spectroscopy), the force interaction between different atoms (scanning force spectroscopy), magnetic domains (magnetic force microscopy), the local capacitance (scanning capacitance microscopy), the local temperature (scanning thermo microscopy), and local light-induced excitations (scanning near-field microscopy) can also be measured with high spatial resolution. In addition, some techniques even allow the manipulation of atomic configurations.

Probably the most important advantage of the low-temperature operation of scanning probe techniques is that they lead to a significantly better signal-to-noise ratio than measuring at room temperature. This is why many researchers work below 100 K. However, there are also physical reasons to use low-temperature equipment. For example, the manipulation of atoms or scanning tunneling spectroscopy with high energy resolution can only be realized at low temperatures. Moreover, some physical effects such as superconductivity or the Kondo effect are restricted to low temperatures. Here, we describe the design criteria of low-temperature scanning probe equipment and summarize some of the most spectacular results achieved since the invention of the method about 30 years ago. We first focus on the scanning tunneling microscope, giving examples of atomic manipulation and the analysis of electronic properties in different material arrangements. Afterwards, we describe results obtained by scanning force microscopy, showing atomic-scale imaging on insulators, as well as force spectroscopy analysis. Finally, the magnetic force microscope, which images domain patterns in ferromagnets and vortex patterns in superconductors, is discussed. Although this list is far from complete, we feel that it gives an adequate impression of the fascinating possibilities of low-temperature scanning probe instruments.

In this chapter low temperatures are defined as lower than about 100 K and are normally achieved by cooling with liquid nitrogen or liquid helium. Applications in which SPMs are operated close to 0 °C are not covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  2. R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, Cambridge, 1994)

    Book  Google Scholar 

  3. M. Tinkham: Introduction to Superconductivity (McGraw–Hill, New York, 1996)

    Google Scholar 

  4. J. Kondo: Theory of dilute magnetic alloys, Solid State Phys. 23, 183–281 (1969)

    Article  Google Scholar 

  5. T.R. Albrecht, P. Grütter, H.K. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69, 668–673 (1991)

    Article  Google Scholar 

  6. F.J. Giessibl, H. Bielefeld, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140, 352–357 (1999)

    Article  Google Scholar 

  7. W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a van der Waals surface: Graphite(0001), Appl. Surf. Sci. 140, 247–252 (1999)

    Article  Google Scholar 

  8. W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger: Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: Atomic resolution on the xenon(111) surface, Europhys. Lett. 48, 276–279 (1999)

    Article  Google Scholar 

  9. M. Morgenstern, D. Haude, V. Gudmundsson, C. Wittneven, R. Dombrowski, R. Wiesendanger: Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110), Phys. Rev. B 62, 7257–7263 (2000)

    Article  Google Scholar 

  10. D.M. Eigler, P.S. Weiss, E.K. Schweizer, N.D. Lang: Imaging Xe with a low-temperature scanning tunneling microscope, Phys. Rev. Lett. 66, 1189–1192 (1991)

    Article  Google Scholar 

  11. P.S. Weiss, D.M. Eigler: Site dependence of the apparent shape of a molecule in scanning tunneling micoscope images: Benzene on Pt{111}, Phys. Rev. Lett. 71, 3139–3142 (1992)

    Article  Google Scholar 

  12. D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526 (1990)

    Article  Google Scholar 

  13. H. Hug, B. Stiefel, P.J.A. van Schendel, A. Moser, S. Martin, H.-J. Güntherodt: A low temperature ultrahigh vacuum scanning force microscope, Rev. Sci. Instrum. 70, 3627–3640 (1999)

    Article  Google Scholar 

  14. S. Behler, M.K. Rose, D.F. Ogletree, F. Salmeron: Method to characterize the vibrational response of a beetle type scanning tunneling microscope, Rev. Sci. Instrum. 68, 124–128 (1997)

    Article  Google Scholar 

  15. C. Wittneven, R. Dombrowski, S.H. Pan, R. Wiesendanger: A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field, Rev. Sci. Instrum. 68, 3806–3810 (1997)

    Article  Google Scholar 

  16. W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures, Rev. Sci. Instrum. 69, 221–225 (1998)

    Article  Google Scholar 

  17. G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992)

    Article  Google Scholar 

  18. H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999)

    Article  Google Scholar 

  19. J. Repp, G. Meyer, F.E. Olsson, M. Persson: Controlling the charge state of individual gold adatoms, Science 305, 493–495 (2004)

    Article  Google Scholar 

  20. R. Berndt, R. Gaisch, J.K. Gimzewski, B. Reihl, R.R. Schlittler, W.D. Schneider, M. Tschudy: Photon emission at molecular resolution induced by a scanning tunneling microscope, Science 262, 1425–1427 (1993)

    Article  Google Scholar 

  21. G.V. Nazin, X.H. Qui, W. Ho: Atomic engineering of photon emission with a scanning tunneling microscopy, Phys. Rev. Lett. 90, 216110–1–216110–4 (2003)

    Article  Google Scholar 

  22. B.G. Briner, M. Doering, H.P. Rust, A.M. Bradshaw: Microscopic diffusion enhanced by adsorbate interaction, Science 278, 257–260 (1997)

    Article  Google Scholar 

  23. F. Meier, L. Zhou, J. Wiebe, R. Wiesendanger: Revealing magnetic interactions from single-atom magnetization curves, Science 320, 82–86 (2008)

    Article  Google Scholar 

  24. J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin: Dimensionality effects in the lifetime of surface states, Science 288, 1399–1401 (2000)

    Article  Google Scholar 

  25. M.F. Crommie, C.P. Lutz, D.M. Eigler: Imaging standing waves in a two-dimensional electron gas, Nature 363, 524–527 (1993)

    Article  Google Scholar 

  26. B.C. Stipe, M.A. Rezaei, W. Ho: Single-molecule vibrational spectroscopy and microscopy, Science 280, 1732–1735 (1998)

    Article  Google Scholar 

  27. A.J. Heinrich, J.A. Gupta, C.P. Lutz, D. Eigler: Single-atom spin-flip spectroscopy, Science 306, 466–469 (2004)

    Article  Google Scholar 

  28. H. Gawronski, M. Mehlhorn, K. Morgenstern: Imaging phonon excitation with atomic resolution, Science 319, 930–933 (2008)

    Article  Google Scholar 

  29. C.W.J. Beenakker, H. van Houten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228 (1991)

    Article  Google Scholar 

  30. K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, J.C. Davis: Imaging the granular structure of high-T c superconductivity in underdoped Bi2Sr2CaCu2O8+δ, Nature 415, 412–416 (2002)

    Article  Google Scholar 

  31. J. Lee, K. Fujita, K. McElroy, J.A. Slezak, M. Wang, Y. Aiura, H. Bando, M. Ishikado, T. Masui, J.X. Zhu, A.V. Balatsky, H. Eisaki, S. Uchida, J.C. Davis: Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ, Nature 442, 546–550 (2006)

    Article  Google Scholar 

  32. K.K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani: Visualizing pair formation on the atomic scale in the high-T c superconductor Bi2Sr2CaCu2O8+δ, Nature 447, 569–572 (2007)

    Article  Google Scholar 

  33. R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber: Atomic-scale surface modifications using a tunneling microscope, Nature 325, 419–421 (1987)

    Article  Google Scholar 

  34. P.G. Piva, G.A. DiLabio, J.L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W.A. Hofer, R.A. Wolkow: Field regulation of single-molecule conductivity by a charged surface atom, Nature 435, 658–661 (2005)

    Article  Google Scholar 

  35. J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)

    Article  Google Scholar 

  36. A.J. Heinrich, J.A. Gupta, C.P. Lutz, D. Eigler: Molecule cascades, Science 298, 1381–1387 (2002)

    Article  Google Scholar 

  37. L. Bartels, G. Meyer, K.H. Rieder: Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope, Phys. Rev. Lett. 79, 697–700 (1997)

    Article  Google Scholar 

  38. J.A. Stroscio, R.J. Celotta: Controlling the dynamics of a single atom in lateral atom manipulation, Science 306, 242–247 (2004)

    Article  Google Scholar 

  39. J.J. Schulz, R. Koch, K.H. Rieder: New mechanism for single atom manipulation, Phys. Rev. Lett. 84, 4597–4600 (2000)

    Article  Google Scholar 

  40. J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, A.M. Chaka: Electronically induced atom motion in engineered CoCun nanostructures, Science 313, 948–951 (2006)

    Article  Google Scholar 

  41. M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, G. Dujardin: Picometer-scale electronic control of molecular dynamics inside a single molecule, Science 308, 1000–1003 (2005)

    Article  Google Scholar 

  42. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich: The force needed to move an atom on a surface, Science 319, 1066–1069 (2008)

    Article  Google Scholar 

  43. J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.P. Rust: Selectivity in vibrationally mediated single-molecule chemistry, Nature 423, 525–528 (2003)

    Article  Google Scholar 

  44. T.C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational excitation mechanisms, Science 268, 1590–1592 (1995)

    Article  Google Scholar 

  45. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba: Lateral hopping of molecules induced by excitations of internal vibration mode, Science 295, 2055–2058 (2002)

    Article  Google Scholar 

  46. Y.W. Mo: Reversible rotation of antimony dimers on the silicon(001) surface with a scanning tunneling microscope, Science 261, 886–888 (1993)

    Article  Google Scholar 

  47. B.C. Stipe, M.A. Rezaei, W. Ho: Inducing and viewing the rotational motion of a single molecule, Science 279, 1907–1909 (1998)

    Article  Google Scholar 

  48. P. Liljeroth, J. Repp, G. Meyer: Current-induced hydrogen tautomerization and conductance switching of napthalocyanine molecules, Science 317, 1203–1206 (2007)

    Article  Google Scholar 

  49. P. Maksymovych, D.B. Dougherty, X.-Y. Zhu, J.T. Yates Jr.: Nonlocal dissociative chemistry of adsorbed molecules induced by localized electron injection into metal surfaces, Phys. Rev. Lett. 99, 016101–1–016101–4 (2007)

    Article  Google Scholar 

  50. G.V. Nazin, X.H. Qiu, W. Ho: Visualization and spectroscopy of a metal-molecule-metal bridge, Science 302, 77–81 (2003)

    Article  Google Scholar 

  51. J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson: Imaging bond formation between a gold atom and pentacene on an insulating surface, Science 312, 1196–1199 (2006)

    Article  Google Scholar 

  52. S. Katano, Y. Kim, M. Hori, M. Trenary, M. Kawai: Reversible control of hydrogenation of a single molecule, Science 316, 1883–1886 (2007)

    Article  Google Scholar 

  53. R. Yamachika, M. Grobis, A. Wachowiak, M.F. Crommie: Controlled atomic doping of a single C60 molecule, Science 304, 281–284 (2004)

    Article  Google Scholar 

  54. S.W. Hla, L. Bartels, G. Meyer, K.H. Rieder: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777–2780 (2000)

    Article  Google Scholar 

  55. Y. Kim, T. Komeda, M. Kawai: Single-molecule reaction and characterization by vibrational excitation, Phys. Rev. Lett. 89, 126104–1–126104–4 (2002)

    Article  Google Scholar 

  56. M. Berthe, R. Stiufiuc, B. Grandidier, D. Deresmes, C. Delerue, D. Stievenard: Probing the carrier capture rate of a single quantum level, Science 319, 436–438 (2008)

    Article  Google Scholar 

  57. N. Neel, J. Kröger, L. Limot, K. Palotas, W.A. Hofer, R. Berndt: Conductance and Kondo effect in a controlled single-atom contact, Phys. Rev. Lett. 98, 016801–1–016801–4 (2007)

    Article  Google Scholar 

  58. F. Rosei, M. Schunack, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, F. Besenbacher: Organic molecules acting as templates on metal surfaces, Science 296, 328–331 (2002)

    Article  Google Scholar 

  59. E. Ganz, S.K. Theiss, I.S. Hwang, J. Golovchenko: Direct measurement of diffusion by hot tunneling microscopy: Activations energy, anisotropy, and long jumps, Phys. Rev. Lett. 68, 1567–1570 (1992)

    Article  Google Scholar 

  60. M. Schunack, T.R. Linderoth, F. Rosei, E. Laegsgaard, I. Stensgaard, F. Besenbacher: Long jumps in the surface diffusion of large molecules, Phys. Rev. Lett. 88, 156102–1–156102–4 (2002)

    Article  Google Scholar 

  61. K.L. Wong, G. Pawin, K.Y. Kwon, X. Lin, T. Jiao, U. Solanki, R.H.J. Fawcett, L. Bartels, S. Stolbov, T.S. Rahman: A molecule carrier, Science 315, 1391–1393 (2007)

    Article  Google Scholar 

  62. L.J. Lauhon, W. Ho: Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope, Phys. Rev. Lett. 85, 4566–4569 (2000)

    Article  Google Scholar 

  63. F. Ronci, S. Colonna, A. Cricenti, G. LeLay: Evidence of Sn adatoms quantum tunneling at the α-Sn/Si(111) surface, Phys. Rev. Lett. 99, 166103–1–166103–4 (2007)

    Article  Google Scholar 

  64. N. Kitamura, M. Lagally, M.B. Webb: Real-time observation of vacancy diffusion on Si(001)-(2 × 1) by scanning tunneling microscopy, Phys. Rev. Lett. 71, 2082–2085 (1993)

    Article  Google Scholar 

  65. M. Morgenstern, T. Michely, G. Comsa: Onset of interstitial diffusion determined by scanning tunneling microscopy, Phys. Rev. Lett. 79, 1305–1308 (1997)

    Article  Google Scholar 

  66. K. Morgenstern, G. Rosenfeld, B. Poelsema, G. Comsa: Brownian motion of vacancy islands on Ag(111), Phys. Rev. Lett. 74, 2058–2061 (1995)

    Article  Google Scholar 

  67. L. Bartels, F. Wang, D. Möller, E. Knoesel, T.F. Heinz: Real-space observation of molecular motion induced by femtosecond laser pulses, Science 305, 648–651 (2004)

    Article  Google Scholar 

  68. B. Reihl, J.H. Coombs, J.K. Gimzewski: Local inverse photoemission with the scanning tunneling microscope, Surf. Sci. 211/212, 156–164 (1989)

    Article  Google Scholar 

  69. R. Berndt, J.K. Gimzewski, P. Johansson: Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces, Phys. Rev. Lett. 67, 3796–3799 (1991)

    Article  Google Scholar 

  70. P. Johansson, R. Monreal, P. Apell: Theory for light emission from a scanning tunneling microscope, Phys. Rev. B 42, 9210–9213 (1990)

    Article  Google Scholar 

  71. J. Aizpurua, G. Hoffmann, S.P. Apell, R. Berndt: Electromagnetic coupling on an atomic scale, Phys. Rev. Lett. 89, 156803–1–156803–4 (2002)

    Article  Google Scholar 

  72. G. Hoffmann, J. Kliewer, R. Berndt: Luminescence from metallic quantum wells in a scanning tunneling microscope, Phys. Rev. Lett. 78, 176803–1–176803–4 (2001)

    Article  Google Scholar 

  73. X.H. Qiu, G.V. Nazin, W. Ho: Vibrationally resolved fluorescence excited with submolecular precission, Science 299, 542–546 (2003)

    Article  Google Scholar 

  74. E. Cavar, M.C. Blüm, M. Pivetta, F. Patthey, M. Chergui, W.D. Schneider: Fluorescence and phosphorescence from individual C60 molecules excited by local electron tunneling, Phys. Rev. Lett. 95, 196102–1–196102–4 (2005)

    Article  Google Scholar 

  75. S.W. Wu, N. Ogawa, W. Ho: Atomic-scale coupling of photons to single-molecule junctions, Science 312, 1362–1365 (2006)

    Article  Google Scholar 

  76. A. Downes, M.E. Welland: Photon emission from Si(111)-(7 × 7) induced by scanning tunneling microscopy: atomic scale and material contrast, Phys. Rev. Lett. 81, 1857–1860 (1998)

    Article  Google Scholar 

  77. M. Kemerink, K. Sauthoff, P.M. Koenraad, J.W. Geritsen, H. van Kempen, J.H. Wolter: Optical detection of ballistic electrons injected by a scanning–tunneling microscope, Phys. Rev. Lett. 86, 2404–2407 (2001)

    Article  Google Scholar 

  78. J. Tersoff, D.R. Hamann: Theory and application for the scanning tunneling microscope, Phys. Rev. Lett. 50, 1998–2001 (1983)

    Article  Google Scholar 

  79. C.J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 1993)

    Google Scholar 

  80. J. Winterlin, J. Wiechers, H. Brune, T. Gritsch, H. Hofer, R.J. Behm: Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy, Phys. Rev. Lett. 62, 59–62 (1989)

    Article  Google Scholar 

  81. J.A. Stroscio, R.M. Feenstra, A.P. Fein: Electronic structure of the Si(111) 2 × 1 surface by scanning-tunneling microscopy, Phys. Rev. Lett. 57, 2579–2582 (1986)

    Article  Google Scholar 

  82. A.L. Vázquez de Parga, O.S. Hernan, R. Miranda, A. Levy Yeyati, N. Mingo, A. Martín-Rodero, F. Flores: Electron resonances in sharp tips and their role in tunneling spectroscopy, Phys. Rev. Lett. 80, 357–360 (1998)

    Article  Google Scholar 

  83. S.H. Pan, E.W. Hudson, J.C. Davis: Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips, Appl. Phys. Lett. 73, 2992–2994 (1998)

    Article  Google Scholar 

  84. J.T. Li, W.D. Schneider, R. Berndt, O.R. Bryant, S. Crampin: Surface-state lifetime measured by scanning tunneling spectroscopy, Phys. Rev. Lett. 81, 4464–4467 (1998)

    Article  Google Scholar 

  85. L. Bürgi, O. Jeandupeux, H. Brune, K. Kern: Probing hot-electron dynamics with a cold scanning tunneling microscope, Phys. Rev. Lett. 82, 4516–4519 (1999)

    Article  Google Scholar 

  86. J.W.G. Wildoer, C.J.P.M. Harmans, H. van Kempen: Observation of Landau levels at the InAs(110) surface by scanning tunneling spectroscopy, Phys. Rev. B 55, R16013–R16016 (1997)

    Article  Google Scholar 

  87. M. Morgenstern, V. Gudmundsson, C. Wittneven, R. Dombrowski, R. Wiesendanger: Nonlocality of the exchange interaction probed by scanning tunneling spectroscopy, Phys. Rev. B 63, 201301(R)-1–201301(R)-4 (2001)

    Google Scholar 

  88. F.E. Olsson, M. Persson, A.G. Borisov, J.P. Gauyacq, J. Lagoute, S. Fölsch: Localization of the Cu(111) surface state by single Cu adatoms, Phys. Rev. Lett. 93, 206803–1–206803–4 (2004)

    Article  Google Scholar 

  89. L. Limot, E. Pehlke, J. Kröger, R. Berndt: Surface-state localization at adatoms, Phys. Rev. Lett. 94, 036805–1–036805–4 (2005)

    Article  Google Scholar 

  90. N. Nilius, T.M. Wallis, M. Persson, W. Ho: Distance dependence of the interaction between single atoms: Gold dimers on NiAl(110), Phys. Rev. Lett. 90, 196103–1–196103–4 (2003)

    Article  Google Scholar 

  91. H.J. Lee, W. Ho, M. Persson: Spin splitting of s and p states in single atoms and magnetic coupling in dimers on a surface, Phys. Rev. Lett. 92, 186802–1–186802–4 (2004)

    Article  Google Scholar 

  92. M.V. Grishin, F.I. Dalidchik, S.A. Kovalevskii, N.N. Kolchenko, B.R. Shub: Isotope effect in the vibrational spectra of water measured in experiments with a scanning tunneling microscope, JETP Lett. 66, 37–40 (1997)

    Article  Google Scholar 

  93. Y. Sainoo, Y. Kim, T. Okawa, T. Komeda, H. Shigekawa, M. Kawai: Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy: Examination through action spectra of cis-2-butene on Pd(110), Phys. Rev. Lett. 95, 246102–1–246102–4 (2005)

    Article  Google Scholar 

  94. X.H. Qiu, G.V. Nazin, W. Ho: Vibronic states in single molecule electron transport, Phys. Rev. Lett. 92, 206102–1–206102–4 (2004)

    Article  Google Scholar 

  95. L. Vitali, M. Burghard, M.A. Schneider, L. Liu, S.Y. Wu, C.S. Jayanthi, K. Kern: Phonon spectromicroscopy of carbon nanostructures with atomic resolution, Phys. Rev. Lett. 93, 136103–1–136103–4 (2004)

    Article  Google Scholar 

  96. B.J. LeRoy, S.G. Lemay, J. Kong, C. Dekker: Electrical generation and absorption of phonons in carbon nanotubes, Nature 432, 371–374 (2004)

    Article  Google Scholar 

  97. L. Vitali, M.A. Schneider, K. Kern, L. Wirtz, A. Rubio: Phonon and plasmon excitation in inelastic scanning tunneling spectroscopy of graphite, Phys. Rev. B 69, 121414–1–121414–4 (2004)

    Article  Google Scholar 

  98. T. Balashov, A.F. Takacz, W. Wulfhekel, J. Kirschner: Magnon excitation with spin-polarized scanning tunneling microscopy, Phys. Rev. Lett. 97, 187201–1–187201–4 (2006)

    Article  Google Scholar 

  99. C.F. Hirjibehedin, C.P. Lutz, A.J. Heinrich: Spin coupling in engineered atomic structures, Science 312, 1021–1024 (2006)

    Article  Google Scholar 

  100. C.F. Hirjibehedin, C.Y. Lin, A.F. Otte, M. Ternes, C.P. Lutz, B.A. Jones, A.J. Heinrich: Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network, Science 317, 1199–1203 (2007)

    Article  Google Scholar 

  101. U. Kemiktarak, T. Ndukum, K.C. Schwab, K.L. Ekinci: Radio-frequency scanning tunneling microscopy, Nature 450, 85–89 (2007)

    Article  Google Scholar 

  102. A. Hewson: From the Kondo Effect to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993)

    Book  Google Scholar 

  103. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen: Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance, Science 280, 567–569 (1998)

    Article  Google Scholar 

  104. J. Li, W.D. Schneider, R. Berndt, B. Delley: Kondo scattering observed at a single magnetic impurity, Phys. Rev. Lett. 80, 2893–2896 (1998)

    Article  Google Scholar 

  105. T.W. Odom, J.L. Huang, C.L. Cheung, C.M. Lieber: Magnetic clusters on single-walled carbon nanotubes: the Kondo effect in a one-dimensional host, Science 290, 1549–1552 (2000)

    Article  Google Scholar 

  106. M. Ouyang, J.L. Huang, C.L. Cheung, C.M. Lieber: Energy gaps in metallic single-walled carbon nanotubes, Science 292, 702–705 (2001)

    Article  Google Scholar 

  107. U. Fano: Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  Google Scholar 

  108. P. Wahl, L. Diekhöner, M.A. Schneider, L. Vitali, G. Wittich, K. Kern: Kondo temperature of magnetic impurities at surfaces, Phys. Rev. Lett. 93, 176603–1–176603–4 (2004)

    Article  Google Scholar 

  109. Y.S. Fu, S.H. Ji, X. Chen, X.C. Ma, R. Wu, C.C. Wang, W.H. Duan, X.H. Qiu, B. Sun, P. Zhang, J.F. Jia, Q.K. Xue: Manipulating the Kondo resonance through quantum size effects, Phys. Rev. Lett. 99, 256601–1–256601–4 (2007)

    Article  Google Scholar 

  110. J. Henzl, K. Morgenstern: Contribution of the surface state to the observation of the surface Kondo resonance, Phys. Rev. Lett. 98, 266601–1–266601–4 (2007)

    Article  Google Scholar 

  111. P. Wahl, P. Simon, L. Diekhöner, V.S. Stepanyuk, P. Bruno, M.A. Schneider, K. Kern: Exchange interaction between single magnetic adatoms, Phys. Rev. Lett. 98, 056601–1–056601–4 (2007)

    Article  Google Scholar 

  112. T. Jamneala, V. Madhavan, M.F. Crommie: Kondo response of a single antiferromagnetic chromium trimer, Phys. Rev. Lett. 87, 256804–1–256804–4 (2001)

    Article  Google Scholar 

  113. P. Wahl, L. Diekhöner, G. Wittich, L. Vitali, M.A. Schneider, K. Kern: Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling, Phys. Rev. Lett. 95, 166601–1–166601–4 (2005)

    Article  Google Scholar 

  114. A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J.G. Hou, Q. Zhu: Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding, Science 309, 1542–1544 (2005)

    Article  Google Scholar 

  115. V. Iancu, A. Deshpande, S.W. Hla: Manipulation of the Kondo effect via two-dimensional molecular assembly, Phys. Rev. Lett. 97, 266603–1–266603–4 (2006)

    Article  Google Scholar 

  116. L. Gao, W. Ji, Y.B. Hu, Z.H. Cheng, Z.T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S.X. Du, W.A. Hofer, X.C. Xie, H.J. Gao: Site-specific Kondo effect at ambient temperatures in iron-based molecules, Phys. Rev. Lett. 99, 106402–1–106402–4 (2007)

    Article  Google Scholar 

  117. H.C. Manoharan, C.P. Lutz, D.M. Eigler: Quantum mirages formed by coherent projection of electronic structure, Nature 403, 512–515 (2000)

    Article  Google Scholar 

  118. H.A. Mizes, J.S. Foster: Long-range electronic perturbations caused by defects using scanning tunneling microscopy, Science 244, 559–562 (1989)

    Article  Google Scholar 

  119. P.T. Sprunger, L. Petersen, E.W. Plummer, E. Laegsgaard, F. Besenbacher: Giant Friedel oscillations on beryllium(0001) surface, Science 275, 1764–1767 (1997)

    Article  Google Scholar 

  120. P. Hofmann, B.G. Briner, M. Doering, H.P. Rust, E.W. Plummer, A.M. Bradshaw: Anisotropic two-dimensional Friedel oscillations, Phys. Rev. Lett. 79, 265–268 (1997)

    Article  Google Scholar 

  121. E.J. Heller, M.F. Crommie, C.P. Lutz, D.M. Eigler: Scattering and adsorption of surface electron waves in quantum corrals, Nature 369, 464–466 (1994)

    Article  Google Scholar 

  122. M.C.M.M. van der Wielen, A.J.A. van Roij, H. van Kempen: Direct observation of Friedel oscillations around incorporated Si_Ga dopants in GaAs by low-temperature scanning tunneling microscopy, Phys. Rev. Lett. 76, 1075–1078 (1996)

    Article  Google Scholar 

  123. O. Millo, D. Katz, Y.W. Cao, U. Banin: Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots, Phys. Rev. Lett. 86, 5751–5754 (2001)

    Article  Google Scholar 

  124. T. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M. Morgenstern, R. Wiesendanger: Wave-function mapping of InAs qunatum dots by scanning tunneling spectroscopy, Phys. Rev. Lett. 91, 196804–1–196804–4 (2003)

    Article  Google Scholar 

  125. R. Temirov, S. Soubatch, A. Luican, F.S. Tautz: Free-electron-like dispersion in an organic monolayer film on a metal substrate, Nature 444, 350–353 (2006)

    Article  Google Scholar 

  126. K. Suzuki, K. Kanisawa, C. Janer, S. Perraud, K. Takashina, T. Fujisawa, Y. Hirayama: Spatial imaging of two-dimensional electronic states in semiconductor quantum wells, Phys. Rev. Lett. 98, 136802–1–136802–4 (2007)

    Article  Google Scholar 

  127. L.C. Venema, J.W.G. Wildoer, J.W. Janssen, S.J. Tans, L.J.T. Tuinstra, L.P. Kouwenhoven, C. Dekker: Imaging electron wave functions of quantized energy levels in carbon nanotubes, Nature 283, 52–55 (1999)

    Google Scholar 

  128. S.G. Lemay, J.W. Jannsen, M. van den Hout, M. Mooij, M.J. Bronikowski, P.A. Willis, R.E. Smalley, L.P. Kouwenhoven, C. Dekker: Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature 412, 617–620 (2001)

    Article  Google Scholar 

  129. C.R. Moon, L.S. Matos, B.K. Foster, G. Zeltzer, W. Ko, H.C. Manoharan: Quantum phase extraction in isospectral electronic nanostructures, Science 319, 782–787 (2008)

    Article  MathSciNet  Google Scholar 

  130. X. Lu, M. Grobis, K.H. Khoo, S.G. Louie, M.F. Crommie: Spatially mapping the spectral density of a single C60 molecule, Phys. Rev. Lett. 90, 096802–1–096802–4 (2003)

    Article  Google Scholar 

  131. A.M. Yakunin, A.Y. Silov, P.M. Koenraad, J.H. Wolter, W. van Roy, J. de Boeck, J.M. Tang, M.E. Flatte: Spatial structure of an individual Mn acceptor in GaAs, Phys. Rev. Lett. 92, 216806–1–216806–4 (200405)

    Article  Google Scholar 

  132. F. Marczinowski, J. Wiebe, J.M. Tang, M.E. Flatte, F. Meier, M. Morgenstern, R. Wiesendanger: Local electronic structure near Mn acceptors in InAs: Surface-induced symmetry breaking and coupling to host states, Phys. Rev. Lett. 99, 157202–1–157202–4 (2007)

    Article  Google Scholar 

  133. N. Nilius, T.M. Wallis, W. Ho: Development of one-dimensional band structure in artificial gold chains, Science 297, 1853–1856 (2002)

    Article  Google Scholar 

  134. J.N. Crain, D.T. Pierce: End states in one-dimensional atom chains, Science 307, 703–706 (2005)

    Article  Google Scholar 

  135. D. Kitchen, A. Richardella, J.M. Tang, M.E. Flatte, A. Yazdani: Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions, Nature 442, 436–439 (2006)

    Article  Google Scholar 

  136. C. Wittneven, R. Dombrowski, M. Morgenstern, R. Wiesendanger: Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy, Phys. Rev. Lett. 81, 5616–5619 (1998)

    Article  Google Scholar 

  137. D. Haude, M. Morgenstern, I. Meinel, R. Wiesendanger: Local density of states of a three-dimensional conductor in the extreme quantum limit, Phys. Rev. Lett. 86, 1582–1585 (2001)

    Article  Google Scholar 

  138. R. Joynt, R.E. Prange: Conditions for the quantum Hall effect, Phys. Rev. B 29, 3303–3317 (1984)

    Article  Google Scholar 

  139. M. Morgenstern, J. Klijn, R. Wiesendanger: Real space observation of drift states in a two-dimensional electron system at high magnetic fields, Phys. Rev. Lett. 90, 056804–1–056804–4 (2003)

    Article  Google Scholar 

  140. M. Morgenstern, J. Klijn, C. Meyer, M. Getzlaff, R. Adelung, R.A. Römer, K. Rossnagel, L. Kipp, M. Skibowski, R. Wiesendanger: Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system, Phys. Rev. Lett. 89, 136806–1–136806–4 (2002)

    Article  Google Scholar 

  141. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan: Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673–676 (1979)

    Article  Google Scholar 

  142. C. Meyer, J. Klijn, M. Morgenstern, R. Wiesendanger: Direct measurement of the local density of states of a disordered one-dimensional conductor, Phys. Rev. Lett. 91, 076803–1–076803–4 (2003)

    Article  Google Scholar 

  143. N. Oncel, A. van Houselt, J. Huijben, A.S. Hallbäck, O. Gurlu, H.J.W. Zandvliet, B. Poelsema: Quantum confinement between self-organized Pt nanowires on Ge(001), Phys. Rev. Lett. 95, 116801–1–116801–4 (2005)

    Article  Google Scholar 

  144. J. Lee, S. Eggert, H. Kim, S.J. Kahng, H. Shinohara, Y. Kuk: Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger liquid, Phys. Rev. Lett. 93, 166403–1–166403–4 (2004)

    Article  Google Scholar 

  145. R.E. Peierls: Quantum Theory of Solids (Clarendon, Oxford, 1955)

    MATH  Google Scholar 

  146. C.G. Slough, W.W. McNairy, R.V. Coleman, B. Drake, P.K. Hansma: Charge-density waves studied with the use of a scanning tunneling microscope, Phys. Rev. B 34, 994–1005 (1986)

    Article  Google Scholar 

  147. X.L. Wu, C.M. Lieber: Hexagonal domain-like charge-density wave of TaS_2 determined by scanning tunneling microscopy, Science 243, 1703–1705 (1989)

    Article  Google Scholar 

  148. T. Nishiguchi, M. Kageshima, N. Ara-Kato, A. Kawazu: Behaviour of charge density waves in a one-dimensional organic conductor visualized by scanning tunneling microscopy, Phys. Rev. Lett. 81, 3187–3190 (1998)

    Article  Google Scholar 

  149. X.L. Wu, C.M. Lieber: Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1 T-TaS2 by scanning tunneling microscopy, Phys. Rev. Lett. 64, 1150–1153 (1990)

    Article  Google Scholar 

  150. J.M. Carpinelli, H.H. Weitering, E.W. Plummer, R. Stumpf: Direct observation of a surface charge density wave, Nature 381, 398–400 (1996)

    Article  Google Scholar 

  151. H.H. Weitering, J.M. Carpinelli, A.V. Melechenko, J. Zhang, M. Bartkowiak, E.W. Plummer: Defect-mediated condensation of a charge density wave, Science 285, 2107–2110 (1999)

    Article  Google Scholar 

  152. S. Modesti, L. Petaccia, G. Ceballos, I. Vobornik, G. Panaccione, G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit, A. Goldoni: Insulating ground state of Sn/Si(111)-(√3×√3)R30°, Phys. Rev. Lett. 98, 126401–1–126401–4 (2007)

    Article  Google Scholar 

  153. H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schäfer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa: Instability and charge density wave of metallic quantum chains on a silicon surface, Phys. Rev. Lett. 82, 4898–4901 (1999)

    Article  Google Scholar 

  154. K. Swamy, A. Menzel, R. Beer, E. Bertel: Charge-density waves in self-assembled halogen-bridged metal chains, Phys. Rev. Lett. 86, 1299–1302 (2001)

    Article  Google Scholar 

  155. J.J. Kim, W. Yamaguchi, T. Hasegawa, K. Kitazawa: Observation of Mott localization gap using low temperature scanning tunneling spectroscopy in commensurate 1 T-TaSe2, Phys. Rev. Lett. 73, 2103–2106 (1994)

    Article  Google Scholar 

  156. A. Wachowiak, R. Yamachika, K.H. Khoo, Y. Wang, M. Grobis, D.H. Lee, S.G. Louie, M.F. Crommie: Visualization of the molecular Jahn–Teller effect in an insulating K4C60 monolayer, Science 310, 468–470 (2005)

    Article  Google Scholar 

  157. J. Bardeen, L.N. Cooper, J.R. Schrieffer: Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  158. A. Yazdani, B.A. Jones, C.P. Lutz, M.F. Crommie, D.M. Eigler: Probing the local effects of magnetic impurities on superconductivity, Science 275, 1767–1770 (1997)

    Article  Google Scholar 

  159. S.H. Tessmer, M.B. Tarlie, D.J. van Harlingen, D.L. Maslov, P.M. Goldbart: Probing the superconducting proximity effect in NbSe2 by scanning tunneling micrsocopy, Phys. Rev. Lett. 77, 924–927 (1996)

    Article  Google Scholar 

  160. K. Inoue, H. Takayanagi: Local tunneling spectroscopy of Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope, Phys. Rev. B 43, 6214–6215 (1991)

    Article  Google Scholar 

  161. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, J.V. Waszczak: Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Phys. Rev. Lett. 62, 214–217 (1989)

    Article  Google Scholar 

  162. H.F. Hess, R.B. Robinson, J.V. Waszczak: Vortex-core structure observed with a scanning tunneling microscope, Phys. Rev. Lett. 64, 2711–2714 (1990)

    Article  Google Scholar 

  163. N. Hayashi, M. Ichioka, K. Machida: Star-shaped local density of states around vortices in a type-II superconductor, Phys. Rev. Lett. 77, 4074–4077 (1996)

    Article  Google Scholar 

  164. H. Sakata, M. Oosawa, K. Matsuba, N. Nishida: Imaging of vortex lattice transition in YNi2B2C by scanning tunneling spectroscopy, Phys. Rev. Lett. 84, 1583–1586 (2000)

    Article  Google Scholar 

  165. S. Behler, S.H. Pan, P. Jess, A. Baratoff, H.-J. Güntherodt, F. Levy, G. Wirth, J. Wiesner: Vortex pinning in ion-irradiated NbSe2 studied by scanning tunneling microscopy, Phys. Rev. Lett. 72, 1750–1753 (1994)

    Article  Google Scholar 

  166. R. Berthe, U. Hartmann, C. Heiden: Influence of a transport current on the Abrikosov flux lattice observed with a low-temperature scanning tunneling microscope, Ultramicroscopy 42-44, 696–698 (1992)

    Article  Google Scholar 

  167. N.C. Yeh, C.T. Chen, G. Hammerl, J. Mannhart, A. Schmehl, C.W. Schneider, R.R. Schulz, S. Tajima, K. Yoshida, D. Garrigus, M. Strasik: Evidence of doping-dependent pairing symmetry in cuprate superconductors, Phys. Rev. Lett. 87, 087003–1–087003–4 (2001)

    Article  Google Scholar 

  168. K. McElroy, R.W. Simmonds, J.E. Hoffman, D.H. Lee, J. Orenstein, H. Eisaki, S. Uchida, J.C. Davis: Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ, Nature 422, 592–596 (2003)

    Article  Google Scholar 

  169. K. McElroy, J. Lee, J.A. Slezak, D.H. Lee, H. Eisaki, S. Uchida, J.C. Davis: Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ, Science 309, 1048–1052 (2005)

    Article  Google Scholar 

  170. S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ, Nature 403, 746–750 (2000)

    Article  Google Scholar 

  171. A. Polkovnikov, S. Sachdev, M. Vojta: Impurity in a d-wave superconductor: Kondo effect and STM spectra, Phys. Rev. Lett. 86, 296–299 (2001)

    Article  Google Scholar 

  172. A.N. Pasupathy, A. Pushp, K.K. Gomes, C.V. Parker, J. Wen, Z. Xu, G. Gu, S. Ono, Y. Ando, A. Yazdani: Electronic origin of the inhomogeneous pairing interaction in the high-T c superconductor Bi2Sr2CaCu2O8+δ, Science 320, 196–201 (2008)

    Article  Google Scholar 

  173. I. Maggio-Aprile, C. Renner, E. Erb, E. Walker, Ø. Fischer: Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7-δ, Phys. Rev. Lett. 75, 2754–2757 (1995)

    Article  Google Scholar 

  174. C. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, Ø. Fischer: Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 80, 3606–3609 (1998)

    Article  Google Scholar 

  175. S.H. Pan, E.W. Hudson, A.K. Gupta, K.W. Ng, H. Eisaki, S. Uchida, J.C. Davis: STM studies of the electronic structure of vortex cores in Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 85, 1536–1539 (2000)

    Article  Google Scholar 

  176. D.P. Arovas, A.J. Berlinsky, C. Kallin, S.C. Zhang: Superconducting vortex with antiferromagnetic core, Phys. Rev. Lett. 79, 2871–2874 (1997)

    Article  Google Scholar 

  177. J.E. Hoffmann, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J.C. Davis: A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295, 466–469 (2002)

    Article  Google Scholar 

  178. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani: Local ordering in the pseudogap state of the high-T c superconductor Bi2Sr2CaCu2O8+δ, Science 303, 1995–1998 (2004)

    Article  Google Scholar 

  179. T. Hanaguri, C. Lupien, Y. Kohsaka, D.H. Lee, M. Azuma, M. Takano, H. Takagi, J.C. Davis: A ‘checkerborad’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2, Nature 430, 1001–1005 (2004)

    Article  Google Scholar 

  180. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates, Science 315, 1380–1385 (2007)

    Article  Google Scholar 

  181. M. Crespo, H. Suderow, S. Vieira, S. Bud’ko, P.C. Canfield: Local superconducting density of states of ErNi_2B_2C, Phys. Rev. Lett. 96, 027003–1–027003–4 (2006)

    Article  Google Scholar 

  182. H. Suderow, S. Vieira, J.D. Strand, S. Bud’ko, P.C. Canfield: Very-low-temperature tunneling spectroscopy in the heavy-fermion superconductor PrOs_4Sb_12, Phys. Rev. B 69, 060504–1–060504–4 (2004)

    Article  Google Scholar 

  183. O. Naaman, W. Teizer, R.C. Dynes: Fluctuation dominated Josephson tunneling with a scanning tunneling microscope, Phys. Rev. Lett. 87, 097004–1–097004–4 (2001)

    Article  Google Scholar 

  184. M. Fäth, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aaarts, J.A. Mydosh: Spatially inhomogeneous metal–insulator transition in doped manganites, Science 285, 1540–1542 (1999)

    Article  Google Scholar 

  185. C. Renner, G. Aeppli, B.G. Kim, Y.A. Soh, S.W. Cheong: Atomic-scale images of charge ordering in a mixed-valence manganite, Nature 416, 518–521 (2000)

    Article  Google Scholar 

  186. H.M. Ronnov, C. Renner, G. Aeppli, T. Kimura, Y. Tokura: Polarons and confinement of electronic motion to two dimensions in a layered manganite, Nature 440, 1025–1028 (2006)

    Article  Google Scholar 

  187. M. Bode, M. Getzlaff, R. Wiesendanger: Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001), Phys. Rev. Lett. 81, 4256–4259 (1998)

    Article  Google Scholar 

  188. A. Kubetzka, M. Bode, O. Pietzsch, R. Wiesendanger: Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips, Phys. Rev. Lett. 88, 057201–1–057201–4 (2002)

    Article  Google Scholar 

  189. O. Pietzsch, A. Kubetzka, M. Bode, R. Wiesendanger: Observation of magnetic hysteresis at the nanometer scale by spin-polarized scanning tunneling spectroscopy, Science 292, 2053–2056 (2001)

    Article  Google Scholar 

  190. S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Xie, S. Blügel, R. Wiesendanger: Real-space imaging of two-dimensional antiferromagnetism on the atomic scale, Science 288, 1805–1808 (2000)

    Article  Google Scholar 

  191. A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, R. Wiesendanger: Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations, Phys. Rev. Lett. 94, 087204–1–087204–4 (2005)

    Article  Google Scholar 

  192. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger: Internal spin-structure of magnetic vortex cores observed by spin-polarized scanning tunneling microscopy, Science 298, 577–580 (2002)

    Article  Google Scholar 

  193. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmeyer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger: Chiral magnetic order at surfaces driven by inversion asymmetry, Nature 447, 190–193 (2007)

    Article  Google Scholar 

  194. K. von Bergmann, S. Heinze, M. Bode, E.Y. Vedmedenko, G. Bihlmayer, S. Blügel, R. Wiesendanger: Observation of a complex nanoscale magnetic structure in a hexagonal Fe monolayer, Phys. Rev. Lett. 96, 167203–1–167203–4 (2006)

    Article  Google Scholar 

  195. C.L. Gao, U. Schlickum, W. Wulfhekel, J. Kirschner: Mapping the surface spin structure of large unit cells: Reconstructed Mn films on Fe(001), Phys. Rev. Lett. 98, 107203–1–107203–4 (2007)

    Article  Google Scholar 

  196. Y. Yayon, V.W. Brar, L. Senapati, S.C. Erwin, M.F. Crommie: Observing spin polarization of individual magnetic adatoms, Phys. Rev. Lett. 99, 067202–1–067202–4 (2007)

    Article  Google Scholar 

  197. M. Bode, O. Pietzsch, A. Kubetzka, R. Wiesendanger: Shape-dependent thermal switching behavior of superparamagnetic nanoislands, Phys. Rev. Lett. 92, 067201–1–067201–4 (2004)

    Article  Google Scholar 

  198. S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, R. Wiesendanger: Current-induced magnetization switching with a spin-polarized scanning tunneling microscope, Science 317, 1537–1540 (2007)

    Article  Google Scholar 

  199. M.D. Kirk, T.R. Albrecht, C.F. Quate: Low-temperature atomic force microscopy, Rev. Sci. Instrum. 59, 833–835 (1988)

    Article  Google Scholar 

  200. D. Pelekhov, J. Becker, J.G. Nunes: Atomic force microscope for operation in high magnetic fields at millikelvin temperatures, Rev. Sci. Instrum. 70, 114–120 (1999)

    Article  Google Scholar 

  201. J. Mou, Y. Jie, Z. Shao: An optical detection low temperature atomic force microscope at ambient pressure for biological research, Rev. Sci. Instrum. 64, 1483–1488 (1993)

    Article  Google Scholar 

  202. H.J. Mamin, D. Rugar: Sub-attonewton force detection at millikelvin temperatures, Appl. Phys. Lett. 79, 3358–3360 (2001)

    Article  Google Scholar 

  203. A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Dynamic mode scanning force microscopy of n-InAs(110)-(1 × 1) at low temperatures, Phys. Rev. B 61, 2837–2845 (2000)

    Article  Google Scholar 

  204. W. Allers, S. Langkat, R. Wiesendanger: Dynamic low-temperature scanning force microscopy on nickel oxide(001), Appl. Phys. A 72, S27–S30 (2001)

    Article  Google Scholar 

  205. F.J. Giessibl: Atomic resolution of the silicon(111)-(7 × 7) surface by atomic force microscopy, Science 267, 68–71 (1995)

    Article  Google Scholar 

  206. M.A. Lantz, H.J. Hug, P.J.A. van Schendel, R. Hoffmann, S. Martin, A. Baratoff, A. Abdurixit, H.-J. Güntherodt: Low temperature scanning force microscopy of the Si(111)-(7 × 7) surface, Phys. Rev. Lett. 84, 2642–2645 (2000)

    Article  Google Scholar 

  207. K. Suzuki, H. Iwatsuki, S. Kitamura, C.B. Mooney: Development of low temperature ultrahigh vacuum force microscope/scanning tunneling microscope, Jpn. J. Appl. Phys. 39, 3750–3752 (2000)

    Article  Google Scholar 

  208. N. Suehira, Y. Sugawara, S. Morita: Artifact and fact of Si(111)-(7 × 7) surface images observed with a low temperature noncontact atomic force microscope (LT-NC-AFM), Jpn. J. Appl. Phys. 40, 292–294 (2001)

    Article  Google Scholar 

  209. R. Pérez, M.C. Payne, I. Štich, K. Terakura: Role of covalent tip–surface interactions in noncontact atomic force microscopy on reactive surfaces, Phys. Rev. Lett. 78, 678–681 (1997)

    Article  Google Scholar 

  210. S.H. Ke, T. Uda, R. Pérez, I. Štich, K. Terakura: First principles investigation of tip–surface interaction on GaAs(110): Implication for atomic force and tunneling microscopies, Phys. Rev. B 60, 11631–11638 (1999)

    Article  Google Scholar 

  211. J. Tobik, I. Štich, R. Pérez, K. Terakura: Simulation of tip–surface interactions in atomic force microscopy of an InP(110) surface with a Si tip, Phys. Rev. B 60, 11639–11644 (1999)

    Article  Google Scholar 

  212. A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Simultaneous imaging of the In and As sublattice on InAs(110)-(1 × 1) with dynamic scanning force microscopy, Appl. Surf. Sci. 140, 293–297 (1999)

    Article  Google Scholar 

  213. H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger: Interpretation of ‘true atomic resolution’ images of graphite (0001) in noncontact atomic force microscopy, Phys. Rev. B 62, 6967–6970 (2000)

    Article  Google Scholar 

  214. H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger: Simulation of NC-AFM images of xenon(111), Appl. Phys. A 72, S35–S38 (2001)

    Article  Google Scholar 

  215. M. Ashino, A. Schwarz, T. Behnke, R. Wiesendanger: Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces, Phys. Rev. Lett. 93, 136101–1–136101–4 (2004)

    Article  Google Scholar 

  216. G. Schwarz, A. Kley, J. Neugebauer, M. Scheffler: Electronic and structural properties of vacancies on and below the GaP(110) surface, Phys. Rev. B 58, 1392–1499 (1998)

    Article  Google Scholar 

  217. M. Ashino, A. Schwarz, H. Hölscher, U.D. Schwarz, R. Wiesendanger: Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy, Nanotechnology 16, 134–137 (2005)

    Article  Google Scholar 

  218. F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140, 352–357 (1999)

    Article  Google Scholar 

  219. S. Hembacher, F.J. Giessibl, J. Mannhart, C.F. Quate: Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite, Phys. Rev. Lett. 94, 056101–1–056101–4 (2005)

    Article  Google Scholar 

  220. F.J. Giessibl: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett. 73, 3956–3958 (1998)

    Article  Google Scholar 

  221. H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger: Determination of tip–sample interaction potentials by dynamic force spectroscopy, Phys. Rev. Lett. 83, 4780–4783 (1999)

    Article  Google Scholar 

  222. H. Hölscher, U.D. Schwarz, R. Wiesendanger: Calculation of the frequency shift in dynamic force microscopy, Appl. Surf. Sci. 140, 344–351 (1999)

    Article  Google Scholar 

  223. B. Gotsman, B. Anczykowski, C. Seidel, H. Fuchs: Determination of tip–sample interaction forces from measured dynamic force spectroscopy curves, Appl. Surf. Sci. 140, 314–319 (1999)

    Article  Google Scholar 

  224. U. Dürig: Extracting interaction forces and complementary observables in dynamic probe microscopy, Appl. Phys. Lett. 76, 1203–1205 (2000)

    Article  Google Scholar 

  225. F.J. Giessibl: A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy, Appl. Phys. Lett. 78, 123–125 (2001)

    Article  Google Scholar 

  226. J.E. Sader, S.P. Jarvis: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Appl. Phys. Lett. 84, 1801–1803 (2004)

    Article  Google Scholar 

  227. M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291, 2580–2583 (2001)

    Article  Google Scholar 

  228. S.M. Langkat, H. Hölscher, A. Schwarz, R. Wiesendanger: Determination of site specific forces between an iron coated tip and the NiO(001) surface by force field spectroscopy, Surf. Sci. 527, 12–20 (2002)

    Article  Google Scholar 

  229. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita, O. Custance: Chemical identification of individual surface atoms by atomic force microscopy, Nature 446, 64–67 (2007)

    Article  Google Scholar 

  230. M. Abe, Y. Sugimoto, O. Custance, S. Morita: Room-temperature reproducible spatial force spectroscopy using atom-tracking technique, Appl. Phys. Lett. 87, 173503 (2005)

    Article  Google Scholar 

  231. H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger: Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy, Appl. Phys. Lett. 81, 4428–4430 (2002)

    Article  Google Scholar 

  232. A. Schirmeisen, D. Weiner, H. Fuchs: Single atom contact mechanics: From atomic scale energy barrier to mechanical relaxation hysteresis, Phys. Rev. Lett. 97, 136101 (2006)

    Article  Google Scholar 

  233. M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita: Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy, Appl. Phys. Lett. 90, 203103 (2007)

    Article  Google Scholar 

  234. A. Schwarz, H. Hölscher, S.M. Langkat, R. Wiesendanger: Three-dimensional force field spectroscopy, AIP Conf. Proc. 696, 68 (2003)

    Article  Google Scholar 

  235. N. Oyabu, Y. Sugimoto, M. Abe, O. Custance, S. Morita: Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy, Nanotechnology 16, 112–117 (2005)

    Article  Google Scholar 

  236. N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita: Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy, Phys. Rev. Lett. 90, 176102–1–176102–4 (2004)

    Article  Google Scholar 

  237. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita: Atom inlays performed at room temperature using atomic force microscopy, Nat. Mater. 4, 156–160 (2005)

    Article  Google Scholar 

  238. C. Sommerhalter, T.W. Matthes, T. Glatzel, A. Jäger-Waldau, M.C. Lux-Steiner: High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy, Appl. Phys. Lett. 75, 286–288 (1999)

    Article  Google Scholar 

  239. A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger: Dynamic mode scanning force microscopy of n-InAs(110)-(1 × 1) at low temperatures, Phys. Rev. B 62, 13617–13622 (2000)

    Article  Google Scholar 

  240. K.L. McCormick, M.T. Woodside, M. Huang, M. Wu, P.L. McEuen, C. Duruoz, J.S. Harris: Scanned potential microscopy of edge and bulk currents in the quantum Hall regime, Phys. Rev. B 59, 4656–4657 (1999)

    Article  Google Scholar 

  241. P. Weitz, E. Ahlswede, J. Weis, K. von Klitzing, K. Eberl: Hall-potential investigations under quantum Hall conditions using scanning force microscopy, Physica E 6, 247–250 (2000)

    Article  Google Scholar 

  242. E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing, K. Eberl: Hall potential profiles in the quantum Hall regime measured by a scanning force microscope, Physica B 298, 562–566 (2001)

    Article  Google Scholar 

  243. M.T. Woodside, C. Vale, P.L. McEuen, C. Kadow, K.D. Maranowski, A.C. Gossard: Imaging interedge-state scattering centers in the quantum Hall regime, Phys. Rev. B 64, 041310–1–041310–4 (2001)

    Article  Google Scholar 

  244. K. Moloni, B.M. Moskowitz, E.D. Dahlberg: Domain structures in single crystal magnetite below the Verwey transition as observed with a low-temperature magnetic force microscope, Geophys. Res. Lett. 23, 2851–2854 (1996)

    Article  Google Scholar 

  245. Q. Lu, C.C. Chen, A. de Lozanne: Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope, Science 276, 2006–2008 (1997)

    Article  Google Scholar 

  246. G. Xiao, J.H. Ross, A. Parasiris, K.D.D. Rathnayaka, D.G. Naugle: Low-temperature MFM studies of CMR manganites, Physica C 341–348, 769–770 (2000)

    Article  Google Scholar 

  247. M. Liebmann, U. Kaiser, A. Schwarz, R. Wiesendanger, U.H. Pi, T.W. Noh, Z.G. Khim, D.W. Kim: Domain nucleation and growth of La0.7Ca0.3MnO3-δ/LaAlO3 films studied by low temperature MFM, J. Appl. Phys. 93, 8319–8321 (2003)

    Article  Google Scholar 

  248. A. Moser, H.J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H.J. Güntherodt, P. Chaudhari: Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy, Phys. Rev. Lett. 74, 1847–1850 (1995)

    Article  Google Scholar 

  249. C.W. Yuan, Z. Zheng, A.L. de Lozanne, M. Tortonese, D.A. Rudman, J.N. Eckstein: Vortex images in thin films of YBa_2Cu_3O_7-x and Bi_2Sr_2Ca_1Cu_2O_8-x obtained by low-temperature magnetic force microscopy, J. Vac. Sci. Technol. B 14, 1210–1213 (1996)

    Article  Google Scholar 

  250. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede: Observation of the Abrikosov vortex lattice in NbSe2 with magnetic force microscopy, Appl. Phys. Lett. 73, 1134–1136 (1998)

    Article  Google Scholar 

  251. A. Moser, H.J. Hug, B. Stiefel, H.J. Güntherodt: Low temperature magnetic force microscopy on YBa2Cu3O7-δ thin films, J. Magn. Magn. Mater. 190, 114–123 (1998)

    Article  Google Scholar 

  252. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede: Imaging of vortices in conventional superconductors by magnetic force microscopy images, Physica C 332, 156–159 (2000)

    Article  Google Scholar 

  253. M. Roseman, P. Grütter: Estimating the magnetic penetration depth using constant-height magnetic force microscopy images of vortices, New J. Phys. 3, 24.1–24.8 (2001)

    Article  Google Scholar 

  254. A. Volodin, K. Temst, C. van Haesendonck, Y. Bruynseraede, M.I. Montero, I.K. Schuller: Magnetic force microscopy of vortices in thin niobium films: Correlation between the vortex distribution and the thickness-dependent film morphology, Europhys. Lett. 58, 582–588 (2002)

    Article  Google Scholar 

  255. U.H. Pi, T.W. Noh, Z.G. Khim, U. Kaiser, M. Liebmann, A. Schwarz, R. Wiesendanger: Vortex dynamics in Bi2Sr2CaCu2O8 single crystal with low density columnar defects studied by magnetic force microscopy, J. Low Temp. Phys. 131, 993–1002 (2003)

    Article  Google Scholar 

  256. M. Roseman, P. Grütter, A. Badia, V. Metlushko: Flux lattice imaging of a patterned niobium thin film, J. Appl. Phys. 89, 6787–6789 (2001)

    Article  Google Scholar 

  257. A. Schwarz, R. Wiesendanger: Magnetic sensitive force microscopy, Nano Today 3, 28–39 (2008)

    Article  Google Scholar 

  258. R. Wiesendanger, D. Bürgler, G. Tarrach, A. Wadas, D. Brodbeck, H.J. Güntherodt, G. Güntherodt, R.J. Gambio, R. Ruf: Vacuum tunneling of spin-polarized electrons detected by scanning tunneling microscopy, J. Vac. Sci. Technol. B 9, 519–524 (1991)

    Article  Google Scholar 

  259. H. Momida, T. Oguchi: First-principles study on exchange force image of NiO(001) surface using a ferromagnetic Fe probe, Surf. Sci. 590, 42–50 (2005)

    Article  Google Scholar 

  260. U. Kaiser, A. Schwarz, R. Wiesendanger: Magnetic exchange force microscopy with atomic resolution, Nature 446, 522–525 (2007)

    Article  Google Scholar 

  261. R. Schmidt, C. Lazo, H. Hölscher, U.H. Pi, V. Caciuc, A. Schwarz, R. Wiesendanger, S. Heinze: Probing the magnetic exchange forces of iron on the atomic scale, Nano Lett. 9, 200–204 (2008)

    Article  Google Scholar 

  262. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329–332 (2004)

    Article  Google Scholar 

  263. J.A. Sidles, J.L. Garbini, G.P. Drobny: The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging, Rev. Sci. Instrum. 63, 3881–3899 (1992)

    Article  Google Scholar 

  264. J.A. Sidles, J.L. Garbini, K.J. Bruland, D. Rugar, O. Züger, S. Hoen, C.S. Yannoni: Magnetic resonance force microscopy, Rev. Mod. Phys. 67, 249–265 (1995)

    Article  Google Scholar 

  265. D. Rugar, O. Züger, S. Hoen, C.S. Yannoni, H.M. Vieth, R.D. Kendrick: Force detection of nuclear magnetic resonance, Science 264, 1560–1563 (1994)

    Article  Google Scholar 

  266. Z. Zhang, P.C. Hammel, P.E. Wigen: Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy, Appl. Phys. Lett. 68, 2005–2007 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Morgenstern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morgenstern, M., Schwarz, A., Schwarz, U.D. (2011). Low-Temperature Scanning Probe Microscopy. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics