Skip to main content

Micro/Nanotribology and Micro/Nanomechanics of Magnetic Storage Devices

  • Chapter
  • First Online:
Nanotribology and Nanomechanics II
  • 1723 Accesses

Abstract

A magnetic recording process involves relative motion between a magnetic medium (tape or disk) against a stationary or rotating read/write magnetic head. For ever-increasing, high areal recording density, the linear flux density (number of flux reversals per unit distance) and the track density (number of tracks per unit distance) should be as high as possible. The size of a single bit dimension for current devices is typically less than 1,000 nm2. This dimension places stringent restrictions on the defect size present on the head and medium surfaces.

Reproduced (read-back) magnetic signal amplitude decreases with a decrease in the recording wavelength and/or the track width. The signal loss results from the magnetic coating thickness, read gap length, and head-to-medium spacing (clearance or flying height). It is known that the signal loss as a result of spacing can be reduced exponentially by reducing the separation between the head and the medium. The need for increasingly higher recording densities requires that surfaces be as smooth as possible and the flying height (physical separation or clearance between a head and a medium) be as low as possible. The ultimate objective is to run two surfaces in contact (with practically zero physical separation) if the tribological issues can be resolved. Smooth surfaces in near contact lead to an increase in adhesion, friction, and interface temperatures, and closer flying heights lead to occasional rubbing of high asperities and increased wear. Friction and wear issues are resolved by appropriate selection of interface materials and lubricants, by controlling the dynamics of the head and medium, and the environment. A fundamental understanding of the tribology (friction, wear, and lubrication) of the magnetic head/medium interface, both on macro- and micro/nanoscales, becomes crucial for the continued growth of this more than $ 60 billion a year magnetic storage industry.

In this chapter, initially, the general operation of drives and the construction and materials used in magnetic head and medium components are described. Then the micro/nanotribological and micro/nanomechanics studies including surface roughness, friction, adhesion, scratching, wear, indentation, and lubrication relevant to magnetic storage devices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan, Tribology of Magnetic Storage Systems, vol. 3 (CRC Press, Boca Raton, 1994), pp. 325–374

    Google Scholar 

  2. B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, Berlin, 1996)

    Book  Google Scholar 

  3. B. Bhushan, Mechanics and Reliability of Flexible Magnetic Media, 2nd edn. (Springer, Berlin, 2000)

    Book  Google Scholar 

  4. B. Bhushan, Macro- and Microtribology of Magnetic Storage Devices. Materials, Coatings, and Industrial Applications, vol. 2 (CRC Press, Boca Raton, 2001), pp. 1413–1513

    Google Scholar 

  5. B. Bhushan, Magnetic Recording Surfaces (Butterworth-Heinemann, Boston, 1993), pp. 116–133

    Google Scholar 

  6. B. Bhushan, Nanotribology and its Applications to Magnetic Storage Devices and MEMS (Kluwer, Dordrecht, 1995), pp. 367–395

    Google Scholar 

  7. B. Bhushan, Micro/nanotribology and its application to magnetic storage devices and mems. Tribol. Int. 28, 85–95 (1995)

    Article  Google Scholar 

  8. B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  Google Scholar 

  9. B. Bhushan, Micro/Nanotribology and its Applications. NATO ASI Ser. 330 (Kluwer, Dordrecht,1997)

    Book  Google Scholar 

  10. B. Bhushan, Handbook of Micro/Nanotribology, 2nd edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  11. B. Bhushan, Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Sci. Ser. II (Kluwer, Dordrecht, 1997)

    Google Scholar 

  12. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  13. B. Bhushan (ed.), Springer Handbook of Nanotechnology (Springer, Berlin, 2004)

    Google Scholar 

  14. J. Ruan, B. Bhushan, Atomic-scale friction measurements using friction force microscopy: Part i – General principles and new measurement techniques. ASME J. Tribol. 116, 378–388 (1994)

    Article  Google Scholar 

  15. B. Bhushan, J. Ruan, Atomic-scale friction measurements using friction force microscopy: Part ii – Application to magnetic media. ASME J. Tribol. 116, 389–396 (1994)

    Article  Google Scholar 

  16. B. Bhushan, V.N. Koinkar, Tribological studies of silicon for magnetic recording applications. J. Appl. Phys. 75, 5741–5746 (1994)

    Article  Google Scholar 

  17. B. Bhushan, V.N. Koinkar, Nanoindentation hardness measurements using atomic force microscopy. Appl. Phys. Lett. 64, 1653–1655 (1994)

    Article  Google Scholar 

  18. B. Bhushan, V.N. Koinkar, J. Ruan, Microtribology of magnetic media. Proc. Inst. Mech. Eng. Part J, Eng. Tribol. 208, 17–29 (1994)

    Article  Google Scholar 

  19. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek, Nanoindentation and picoindentation measurements using a capacitance transducer system in atomic force microscopy. Philos. Mag. 74, 1117–1128 (1996)

    Article  Google Scholar 

  20. S. Sundararajan, B. Bhushan, Development of a continuous microscratch technique in an atomic force microscopy and its applications to study scratch resistance of ultra-thin hard amorphous carbon coatings. J. Mater. Res. 16, 437–445 (2001)

    Article  Google Scholar 

  21. D. DeVecchio, B. Bhushan, Localized surface elasticity measurements using an atomic force microscope. Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  Google Scholar 

  22. V. Scherer, B. Bhushan, U. Rabe, W. Arnold, Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies. IEEE Trans. Mag. 33, 4077–4079 (1997)

    Article  Google Scholar 

  23. W.W. Scott, B. Bhushan, Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films. Ultramicroscopy 97, 151–169 (2003)

    Article  Google Scholar 

  24. B. Bhushan, J. Qi, Phase contrast imaging of nanocomposites and molecularly-thick lubricant films in magnetic media. Nanotechnology 14, 886–895 (2003)

    Article  Google Scholar 

  25. T. Kasai, B. Bhushan, L. Huang, C. Su, Topography and phase imaging using the torsional resonance mode. Nanotechnology 15, 731–742 (2004)

    Article  Google Scholar 

  26. B. Bhushan, T. Kasai, A surface topography-independent friction measurement technique using torsional resonance mode in an afm. Nanotechnology 15, 923–935 (2004)

    Article  Google Scholar 

  27. B. Bhushan, T. Miyamoto, V.N. Koinkar, Microscopic friction between a sharp diamond tip and thin-film magnetic rigid disks by friction force microscopy. Adv. Info. Storage Syst. 6, 151–161 (1995)

    Article  Google Scholar 

  28. V.N. Koinkar, B. Bhushan, Microtribological studies of Al2O3, Al2O3–TiC, polycrystalline and single-crystal Mn–Zn ferrite and SiC head slider materials. Wear 202, 110–122 (1996)

    Article  Google Scholar 

  29. V.N. Koinkar, B. Bhushan, Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Article  Google Scholar 

  30. H. Liu, B. Bhushan, Nanotribological characterization of molecularly-thick lubricant films for applications to mems/nems by afm. Ultramicroscopy 97, 321–340 (2003)

    Article  Google Scholar 

  31. B. Bhushan, Magnetic slider/rigid disk substrate materials and disk texturing techniques – status and future outlook. Adv. Info. Storage Syst. 5, 175–209 (1993)

    Google Scholar 

  32. B. Bhushan, M. Dominiak, J.P. Lazzari, Contact- start-stop studies with silicon planar head sliders against thin-film disks. IEEE Trans. Mag. 28, 2874–2876 (1992)

    Article  Google Scholar 

  33. B. Bhushan, G.S. Blackman, Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology. ASME J. Tribol. 113, 452–458 (1991)

    Article  Google Scholar 

  34. P.I. Oden, A. Majumdar, B. Bhushan, A. Padmanabhan, J.J. Graham, Afm imaging, roughness analysis and contact mechanics of magnetic tape and head surfaces. ASME J. Tribol. 114, 666–674 (1992)

    Article  Google Scholar 

  35. S. Ganti, B. Bhushan, Generalized fractal analysis and its applications to engineering surfaces. Wear 180, 17–34 (1995)

    Article  Google Scholar 

  36. C.Y. Poon, B. Bhushan, Comparison of surface roughness measurements by stylus profiler, afm and non-contact optical profiler. Wear 190, 76–88 (1995)

    Article  Google Scholar 

  37. C.Y. Poon, B. Bhushan, Surface roughness analysis of glass–ceramic substrates and finished magnetic disks, and Ni–P coated Al–Mg and glass substrates. Wear 190, 89–109 (1995)

    Article  Google Scholar 

  38. V.N. Koinkar, B. Bhushan, Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 81, 2472–2479 (1997)

    Article  Google Scholar 

  39. A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME J. Tribol. 112, 205–216 (1990)

    Article  Google Scholar 

  40. A. Majumdar, B. Bhushan, Fractal model of elastic-plastic contact between rough surfaces. ASME J. Tribol. 113, 1–11 (1991)

    Article  Google Scholar 

  41. B. Bhushan, A. Majumdar, Elastic-plastic contact model for bifractal surfaces. Wear 153, 53–64 (1992)

    Article  Google Scholar 

  42. B. Bhushan, Contact mechanics of rough surfaces in tribology: Single asperity contact. Appl. Mech. Rev. 49, 275–298 (1996)

    Article  Google Scholar 

  43. B. Bhushan, Contact mechanics of rough surfaces in tribology: Multiple asperity contact. Tribol. Lett. 4, 1–35 (1998)

    Article  Google Scholar 

  44. B. Bhushan, W. Peng, Contact mechanics of multilayered rough surfaces. Appl. Mech. Rev. 55, 435–480 (2002)

    Article  Google Scholar 

  45. B. Bhushan, V.N. Koinkar, Microtribology of pet polymeric films. Tribol. Trans. 38, 119–127 (1995)

    Article  Google Scholar 

  46. B. Bhushan, V.N. Koinkar, Macro and microtribological studies of CrO2 video tapes. Wear 180, 9–16 (1995)

    Article  Google Scholar 

  47. B. Bhushan, V.N. Koinkar, Microtribology of metal particle, barium ferrite and metal evaporated magnetic tapes. Wear 181–183, 360–370 (1995)

    Google Scholar 

  48. B. Bhushan, V.N. Koinkar, Microscale mechanical and tribological characterization of hard amorphous carbon coatings as thin as 5 nm for magnetic disks. Surf. Coat. Technol. 76–77, 655–669 (1995)

    Google Scholar 

  49. V.N. Koinkar, B. Bhushan, Microtribological properties of hard amorphous carbon protective coatings for thin-film magnetic disks and heads. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 211, 365–372 (1997)

    Article  Google Scholar 

  50. A.V. Kulkarni, B. Bhushan, Nanoindentation measurements of amorphous carbon coatings. J. Mater. Res. 12, 2707–2714 (1997)

    Article  Google Scholar 

  51. X. Li, B. Bhushan, Micro/nanomechanical and tribological characterization of ultra-thin amorphous carbon coatings. J. Mater. Res. 14, 2328–2337 (1999)

    Article  Google Scholar 

  52. X. Li, B. Bhushan, Mechanical and tribological studies of ultra-thin hard carbon overcoats for magnetic recording heads. Z. Metallkd. 90, 820–830 (1999)

    Google Scholar 

  53. S. Sundararajan, B. Bhushan, Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225–229, 678–689 (1999)

    Article  Google Scholar 

  54. B. Bhushan, S. Sundararajan, Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46, 3793–3804 (1998)

    Article  Google Scholar 

  55. J. Ruan, B. Bhushan, Frictional behavior of highly oriented pyrolytic graphite. J. Appl. Phys. 76, 8117–8120 (1994)

    Article  Google Scholar 

  56. S. Sundararajan, B. Bhushan, Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J. Appl. Phys. 88, 4825–4831 (2000)

    Article  Google Scholar 

  57. B. Bhushan, V.N. Koinkar, Microtribological studies of doped single-crystal silicon and polysilicon films for mems devices. Sensor Actuator A 57, 91–102 (1997)

    Article  Google Scholar 

  58. S. Sundararajan, B. Bhushan, Micro/nanotribological studies of polysilicon and SiC films for mems applications. Wear 217, 251–261 (1998)

    Article  Google Scholar 

  59. B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments. Diam. Relat. Mater. 8, 1985–2015 (1999)

    Article  Google Scholar 

  60. H. Hibst, Metal Evaporated Tapes and Co–Cr Media for High Definition Video Recording (Kluwer, Dordrecht, 1993), pp. 137–159

    Google Scholar 

  61. M.Y. Chu, B. Bhushan, L. DeJonghe, Wear behavior of ceramic sliders in sliding contact with rigid magnetic thin-film disks. Tribol. Trans. 35, 603–610 (1992)

    Article  Google Scholar 

  62. B. Bhushan, S. Sundararajan, W.W. Scott, S. Chilamakuri, Stiction analysis of magnetic tapes. IEEE Trans. Mag. 33, 3211–3213 (1997)

    Article  Google Scholar 

  63. V.J. Novotny, I. Hussla, J.M. Turlet, M.R. Philpott, Liquid polymer conformation on solid surfaces. J. Chem. Phys. 90, 5861–5868 (1989)

    Article  Google Scholar 

  64. V.J. Novotny, Migration of liquid polymers on solid surfaces. J. Chem. Phys. 92, 3189–3196 (1990)

    Article  Google Scholar 

  65. C.M. Mate, V.J. Novotny, Molecular conformation and disjoining pressures of polymeric liquid films. J. Chem. Phys. 94, 8420–8427 (1991)

    Article  Google Scholar 

  66. C.M. Mate, Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084–3090 (1992)

    Article  Google Scholar 

  67. B. Bhushan, Z. Zhao, Macro- and microscale studies of molecularly-thick boundary layers of perfluoropolyether lubricants for magnetic thin-film rigid disks. J. Info. Storage Proc. Syst. 1, 1–21 (1999)

    Google Scholar 

  68. R. Heideman, M. Wirth, Transforming the lubricant on a magnetic disk into a solid fluorine compound. IBM Technol. Disclosure Bull. 27, 3199–3205 (1984)

    Google Scholar 

  69. A.M. Homola, L.J. Lin, D.D. Saperstein. Process for bonding lubricant to a thin film magnetic recording disk (1990)

    Google Scholar 

  70. D.D. Saperstein, L.J. Lin, Improved surface adhesion and coverage of perfluoropolyether lubricant following far-uv irradiation. Langmuir 6, 1522–1524 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2011). Micro/Nanotribology and Micro/Nanomechanics of Magnetic Storage Devices. In: Bhushan, B. (eds) Nanotribology and Nanomechanics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15263-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15263-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15262-7

  • Online ISBN: 978-3-642-15263-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics