Skip to main content

Ectomycorrhiza and Secondary Metabolites

  • Chapter
  • First Online:
Diversity and Biotechnology of Ectomycorrhizae

Part of the book series: Soil Biology ((SOILBIOL,volume 25))

Abstract

Ectomycorrhizal symbiosis leads to the diversification of both the mycobiont and their host. Differences in organogenetic programs are reflected in ectomycorrhizal root morphology, but key developmental programs are triggered in the physiological processes in both symbiosis partners and are dependent on hormones and secondary signals. Identifying the processes that regulate the signals flow between mycorrhizal fungi and host roots is of a great significance.

Molecules released by roots into rhizosphere can comprise flavonoids, terpenes, and hormones. Root exudates also trigger an enhanced accumulation of fungal metabolites such as sterols, auxins, cytokinins, gibberellins (GAs), abscisic acid, and ethylene. These compounds derived from roots and fungi play a significant role mainly in presymbiotic phase modifying tropism of hyphae for roots, facilitating attachment and invasion of host tissues by hyphae, inducing morphological and physiological changes in the roots and mycelium as well as in the maintenance of mycorrhizal association, facilitating survival of the mycobiont despite plant defense reaction and coordinating the exchange metabolites between the mycobiont and host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MF, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58: 371–374

    Article  CAS  Google Scholar 

  • Arshad M, Frankerberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advan Agron 62:45–151

    Article  CAS  Google Scholar 

  • Asiegbu FO, Johansson M, Woodward S, HĂŒtterman A (1998) Biochemistry of the host–parasite interaction. In: Woodward S, Stenlid J, Karialajnen R, HĂŒtterman A (eds) Heterobasidion annosum: Biology, ecology, impact and control. University Press, Cambridge, pp 167–193

    Google Scholar 

  • Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Ann Rev Genet 29:107–129

    Article  PubMed  CAS  Google Scholar 

  • BĂ©guiristain T, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytol 136:525–532

    Article  Google Scholar 

  • Beyler M, Heyser W (1997) The influence of mycorrhizal colonization on growth in the greenhouse and on catechin, epicatechin and procyanidin in roots of Fagus sylvatica L. Mycorhhiza 7:171–177

    Article  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch H, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141:33–39

    Article  Google Scholar 

  • Davies PJ (1995) The plant hormones: their nature, occurence, and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–12

    Google Scholar 

  • DeVries HE, Mudge KW, Lardner JP (1987) Ethylene production by several ectomycorrhizal fungi and effects on host root morphology. In: Sylvia EM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, p 245

    Google Scholar 

  • Ditengou FA, BĂ©guiristain T, Lapeyrie F (2000) Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by IAA. Planta 211:722–728

    Article  PubMed  CAS  Google Scholar 

  • Dixon RK (1989) Cytokinin activity in Citrus jambhiri seedlings colonized by mycorrhizal fungi. Agric Ecosystems Environ 29:103–106

    Article  Google Scholar 

  • Frankenberger WT, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913

    PubMed  CAS  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Gay G (1986) Effect of glucose on indole-3-acetic production by the ectomycorrhizal fungus Hebeloma hiemale in pure culture. Physiol Veg 24:185–192

    CAS  Google Scholar 

  • Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter- and intraspecific variability in homo- and dikaryotic mycelia. Appl Microbiol Biotechnol 26:141–146. doi: 10.1007/BF00253898

    Article  CAS  Google Scholar 

  • Gay G, Normand L, Marmeisse R, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum RomagnĂ©si have increased mycorrhizal activity. New Phytol 128: 645–657

    Article  CAS  Google Scholar 

  • Gogala N (1971) Growth substances in mycorrhiza of the fungus Boletus pinicola Vitt. and the pine-tree Pinus sylvestris L. Razprave 14:123–202

    Google Scholar 

  • Gogala N (1989) Growth substances in root exudate Pinus sylvestris – their influence on mycorrhizal fungi (effect of jasmonic acid). Agric Ecosystems Environ 28:151–154

    Article  Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experimentia 47:331–339

    Article  CAS  Google Scholar 

  • Gogala N, Pohleven F (1976) The effect of cytokinins and auxins on the growth of mycorrhizal fungus Suillus variegatus. Acta Bot Croat 35:129–134

    CAS  Google Scholar 

  • Graham JH, Linderman RG (1980) Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas fir roots. Can J Microbiol 26:1340–1347

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T (1985) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, p 679

    Google Scholar 

  • Ho I (1987) Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Can J For Res 17:31–35

    Article  CAS  Google Scholar 

  • Horan DP, Chilvers GA, Lapeyrie F (1988) Time sequence of the infection process in eucalypt ectomycorrhizas. New Phytol 109:451–458

    Article  Google Scholar 

  • Kakiuchi Y, GĂ lis I, Tamogami S, Wabiko H (2006) Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta 223:237–242

    Article  PubMed  CAS  Google Scholar 

  • Kampert M, Strzelczyk E (1989) Effect of amino acids on cytokinin-like substances production by micorrhizal fungi of pine (Pinus sylvestris L.). Agric Ecosyst Environ 28:219–228

    Article  Google Scholar 

  • Koide RT, Suomi L, Stevens CM, McCormick L (1998) Interactions between needles of Pinus resinosa and ectomycorrhizal fungi. New Phytol 140:539–547

    Article  Google Scholar 

  • Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nordic J Bot 7:85–95

    Article  Google Scholar 

  • Krupa S, Andersson J, Marx DH (1973) Studies on ectomicorrhizae of pine IV. Volatile organic constituents in micorrhizal and nonmycorrhizal root systems of Pinus echinata Mill. Eur J For Pathol 3:194–200

    Article  CAS  Google Scholar 

  • Laczko E, Boller T, Wiemken V (2004) Lipids in roots of Pinus sylvestris seedlings and in mycelia of Pisolithus tinctorius during ectomycorrhiza formation: changes in fatty acid and sterol composition. Plant Cell Environ 27:27–40

    Article  CAS  Google Scholar 

  • Lagrange H, Jay-Allemand C, Lapeyrie F (2001) Rutin, the phenolglycoside from Eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 150:349–355

    Article  Google Scholar 

  • Laitinen ML, Julkunen-Tiitto R, Tahvanainen J, Heinonen J, Rousi M (2005) Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. J Chem Ecol 31:697–717

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • McGaw BA, Burch LR (1995) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 98–117

    Google Scholar 

  • Mekin E, Krupa S (1971) Studies on ectomicorrhizae of pine. II. Growth inhibition of mycorrhizal fungi by volatile organic constituents of Pinus silvestis L. (Scots pine) roots. Physiol Plantarum 25:337–340

    Article  Google Scholar 

  • Molina E, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among pacific northwest conifers and fungi. Forest Sci 28:423–458

    Google Scholar 

  • NapieraƂa-Filipiak A, Werner A, Mardarowicz M, Gawdzik J (2002) Concentrations of terpenes in micorrhizal roots of Scots pine (Pinus sylvestris L.) seedlings grown in vitro. Acta Physiol Plant 24:137–143

    Article  Google Scholar 

  • Niemi K, Julkunen-Tiitto R, HĂ€ggman H, Sarjala T (2007) Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58:391–401. doi: 10.1093/jxb/erl209

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee AA, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutatnts with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  PubMed  CAS  Google Scholar 

  • Pohleven F, Gogala N (1986) The influence of natural cytokinins on the content of K, P, Ca and Na in the mycelium of the mycorrhizal fungus Suillus variegatus. Biol Vestn 34:79–88

    Google Scholar 

  • Pokojska A, Strzelczyk E, Li CY, Rozycki H, Szablewska M (1993) Effect of plant growth regulators on growth of ectomycorrhizal fungi. Cryptogam Bot 4:8–13

    Google Scholar 

  • Prior C (1976) Resistance by Corsican pine to Fomes annosus. Ann Bot 40:261–279

    Google Scholar 

  • Rupp LA, Mudge KW, Negm FB (1989) Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can J Bot 67:477–482

    Article  CAS  Google Scholar 

  • SchĂŒtzendĂŒbel A, Polle A (2004) Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Slankis V (1950) Effect of α napthaleneacetic acid on dichotomus branching of isolated roots of Pinus silvestris. Physiol Plantarum 3:40

    Article  Google Scholar 

  • Slankis V (1973) Hormonal relationships in mycorrhizal development. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, pp 231–298

    Google Scholar 

  • Smith WH (1987) The atmosphere and the rhizosphere: linkages with potential significance for forest tree health. In: Blasser RO (ed) Technical Bulletin of national council of the paper industry for air and stream improvements, vol. 527. New York, pp 30–94

    Google Scholar 

  • Stegnar P, Gogala N, Pohleven F (1978) The uptake of cadmium, zinc, phosphorus, and plant hormone kinetin by ectomycorrhizal fungi. Acta Bot Croat 37:67–73

    CAS  Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances production by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and mycorrhizosphere of pine (Pinus sylvestris L.). Plant Soil 81:185–194

    Article  CAS  Google Scholar 

  • Strzelczyk E, Sitek JM, Kowalski S (1975) Production of gibberelin-like substances by fungi isolated from mycorrhizae of pine (Pinus silvestris L.). Acta Microbiol Pol 7:145–153

    CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavoniods as developmental regulators. Curr Opinion Plant Biol 8:317–323

    Article  CAS  Google Scholar 

  • Thiagarajan TR, Ahmad MH (1994) Phosphatase activity and citokinin content in cowpeas (Vagna unguiculata) inoculated with a vesicular-arbuscular mycorrhizal fungus. Biol Fertil Soils 17:51–56

    Article  CAS  Google Scholar 

  • Varese TC, Portinaro S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti MG (1996) Bacteria associated with Suillus grevillei sporocarps and ectendomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis-Rehovot 21:113–129

    Google Scholar 

  • Weiss M, Mikolajewski S, Peipp H, Schmitt U, Schmidt J, Wray V, Strack D (1997) Tissue-specific and developmental-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol 114:15–27

    PubMed  CAS  Google Scholar 

  • Weiss M, Schmidt J, Neumann D, Wray V, Crist R, Strack D (1999) Phenylpropanoids in mycorrhizas of the Pinaceae. Planta 208:491–502

    Article  CAS  Google Scholar 

  • Werner A (1993) Pathological anatomy of thin woody roots of Scots pine invaded by Heterobasidion annosum (Fr.) Bref. Arboretum KĂłrnickie 38:113–129

    Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Communicat 3:1205–1216

    CAS  Google Scholar 

  • Zhi-lin Y, Chuan-chao D, Lian-qing C (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Dahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Dahm, H., GoliƄska, P. (2011). Ectomycorrhiza and Secondary Metabolites . In: Rai, M., Varma, A. (eds) Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15196-5_16

Download citation

Publish with us

Policies and ethics