Skip to main content

Near Infrared Three-Dimensional Nonlinear Optical Monitoring of Stem Cell Differentiation

  • Chapter
  • First Online:
Optical Fluorescence Microscopy
  • 2337 Accesses

Abstract

Under certain conditions, embryonic stem cells (ESCs) can be induced to differentiate into cartilage cells (chondrocytes), neuronal cells and pancreatic cells to a state suitable for transplantation to treat disorders/lesions in a clinical setting. Currently, this involves culturing cells either in the form of a monolayer (2D culture) or in a scaffold (3D culture), which may improve the formation of extracellular matrix. In this chapter, we attempt to compare the differentiation kinetics of ESCs using noninvasive near infrared nonlinear optical imaging (NLOI) for vital 3D monitoring of stem cell differentiation. In particular, we describe experimental and NLOI data pertaining to mouse embryonic stem cells (mESCs) induced to differentiate into chondrocytes, neuronal and pancreatic cells via embryoid bodies (EBs) formation either (a) on 2D plastic coverslips, (b) in 3D by suspending them in culture medium, (c) or growing them in collagen type-I-based 3D scaffolds. It was found that NLOI comprising two-photon excitation (TPE) and second harmonic generation (SHG) can be used as a versatile tool to simultaneously monitor morphological features of differentiating mESCs, as well as the formation of collagen fibres at various stages of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168(2):342–357

    Article  PubMed  CAS  Google Scholar 

  • Boerboom RA, Krahn KN, Megens RTA, van Zandvoort MAMJ, Merkx M, Bouten CVC (2007) High resolution imaging of collagen organization and synthesis using a versatile collagen specific probe. J Struct Biol 159(3):392–399

    Article  PubMed  CAS  Google Scholar 

  • Boon CH, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152–1167

    Article  Google Scholar 

  • Bourne SJ, Polak JM, Hughes SPF, Buttery LDK (2004) Osteogenic differentiation of mouse embryonic stem cells: differential gene expression analysis by cDNA microarray and purification of osteoblasts by cadherin-11 magnetically activated cell sorting. Tissue Eng 10(5–6):796–806

    Article  PubMed  CAS  Google Scholar 

  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428):754–756

    Article  PubMed  CAS  Google Scholar 

  • Buttery LDK, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SPF, Episkpou V, Polak JM (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 7(1):89–99

    Article  PubMed  CAS  Google Scholar 

  • Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21(11):1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394

    Article  PubMed  Google Scholar 

  • Elima K, Eerola I, Rosati R, Metsäranta M, Garofalo S, Perälä M, Crombrugghe BD, Vuorio E (1993) The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern. J Biochem 289:247–253

    CAS  Google Scholar 

  • Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108(10):3181–3188

    PubMed  CAS  Google Scholar 

  • Gratsch TE, O’Shea KS (2002) Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 245(1):83–94

    Article  PubMed  CAS  Google Scholar 

  • Hancock CR, Wetherington JP, Lambert NA, Condie BG (2000) Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 271(2):418–421

    Article  PubMed  CAS  Google Scholar 

  • Hegert C, Kramer J, Hargus G, Muller J, Guan K, Wobus AM, Muller PK, Rohwedel J (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci 115(23):4617–4628

    Article  PubMed  CAS  Google Scholar 

  • Huber G, Matus A (1984) Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J Neurosci 4(1):151–160

    PubMed  CAS  Google Scholar 

  • Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2006a) Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24(2):284–291

    Article  PubMed  CAS  Google Scholar 

  • Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J (2006b) Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials 27(36):6015–6023

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Yoshimura S, Kokuzawa J, Kitajima H, Kaku Y, Iwama T, Shinoda J, Kunisada T, Sakai N (2004) Hepatocyte growth factor promotes neuronal differentiation of stem cells derived from embryonic stem cells. NeuroReport 15(1):5–8

    Article  PubMed  Google Scholar 

  • Kitajima H, Yoshimura S, Kokuzawa J, Kato M, Iwama T, Motohashi T, Kunisada T, Sakai N (2005) Culture method for the induction of neurospheres from mouse embryonic stem cells by coculture with PA6 stromal cells. J Neurosci Res 80(4):467–474

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa A, Shimizu N (2005) Differentiation of mouse embryonic stem cells into neurons using conditioned medium of dorsal root ganglia. J Biosci Bioeng 100(1):94–99

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rodwedel J (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro activation by BMP-2 and BMP-4. Mech Dev 92(2):193–205

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Hargus G, Rohwedel J (2003) Chondrocytes derived from mouse embryonic stem cells. Cytotechnology 41:177–187

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Hegert C, Hargus G, Rohwedel J (2005a) Mouse ES cell lines show a variable degree of chondrogenic differentiation in vitro. Cell Biol Int 29(2):139–146

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Klinger M, Kruse C, Faza M, Hargus G, Rohwedel J (2005b) Ultrastructural analysis of mouse embryonic stem cell-derived chondrocytes. Anat Embryol 210(3):175–185

    Article  PubMed  Google Scholar 

  • Kramer J, Bohrnsen F, Schlenke P, Rohwedel J (2006) Stem cell-derived chondrocytes for regenerative medicine. Transplant Proc 38:762–765

    Article  PubMed  CAS  Google Scholar 

  • Lau T, Adam S, Schloss P (2006) Rapid and efficient differentiation of dopaminergic neurons from mouse embryonic stem cells. NeuroReport 17(10):975–979

    Article  PubMed  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 72(4):1441–1445

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53(4):1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Mulholland WJ (2006) Targeted epidermal DNA vaccine delivery. DPhil Thesis, Department of Engineering Science, University of Oxford, Oxford

    Google Scholar 

  • Murashov AK, Pak ES, Hendricks WA, Owensby JP, Sierpinski PL, Tatko LM, Fletcher PL (2005) Directed differentiation of embryonic stem cells into dorsal interneurons. FASEB J 19(2):252–254

    PubMed  CAS  Google Scholar 

  • Nakanishi M, Hamazaki TS, Komazaki S, Okochi H, Asashima M (2007) Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation 75:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nieden N, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71(1):18–23

    Article  PubMed  Google Scholar 

  • Nieden N, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5(1):1–15

    Article  PubMed  Google Scholar 

  • Pagani F, Lauro C, Fucile S, Catalano M, Limatola C, Eusebi F, Grassi F (2006) Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res 83:1494–1501

    Article  PubMed  CAS  Google Scholar 

  • Raikwar SP, Zavazava N (2009) Insulin producing cells derived from embryonic stem cells: are we there yet? J Cell Physiol 218(2):256–263

    Article  PubMed  CAS  Google Scholar 

  • Riederer B, Matus A (1985) Differential expression of distinct microtubule-associated proteins during brain development. Proc Natl Acad Sci USA 82(17):6006–6009

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23(5):656–662

    Article  PubMed  CAS  Google Scholar 

  • St-Onge L, Wehr R, Grusst P (1999) Pancreas development and diabetes. Curr Opin Genet Dev 9(3):295–300

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Shang K, Wang X, Gu J (2002) Differentiation of embryonic stem cell to astrocytes visualized by green fluorescent protein. Cell Mol Neurobiol 22(1):95–101

    Article  PubMed  CAS  Google Scholar 

  • Tirlapur UK, Mulholland WJ, Bellhouse BJ, Kendall M, Cornhill JF, Cui ZF (2006) Femtosecond two-photon high-resolution 3D imaging, spatial-volume rendering and microspectral characterization of immuno-localized MHC-II and mLangerin/CD207 antigens in the mouse epidermis. Microsc Res Tech 69:767–775

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Ye K (2009) Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng A 15(8):1941–1952

    Article  CAS  Google Scholar 

  • Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85(24):9484–9488

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21(2):183–186

    Article  PubMed  CAS  Google Scholar 

  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080

    Article  PubMed  CAS  Google Scholar 

  • Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Frances Brook for her help in various ways during the completion of studies on chondrogenic differentiation of mESC. Professor Andy Carr and Professor Udo Oppermann are thanked for their support during the completion of this manuscript. UKT is presently supported by seed funding from Oxford Stem Cell Institute (OSCI), grant code: HFROVJ0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday K. Tirlapur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Tirlapur, U.K., Yapp, C. (2011). Near Infrared Three-Dimensional Nonlinear Optical Monitoring of Stem Cell Differentiation. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_13

Download citation

Publish with us

Policies and ethics