Skip to main content

Fundamentals of Optical Microscopy

  • Chapter
  • First Online:
Optical Fluorescence Microscopy

Abstract

This chapter covers, in a very brief and introductory way, some of the fundamental aspects of modern optical microscopy, such as contrast techniques, spatial resolution topics, and high-speed acquisition solutions. It provides a sort of guided tour to introduce the crowded and complex world of optical microscopy, whose topics are treated in detail in the other chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axelrod D, Thompson NL, Burghardt TP (1983) Total internal inflection fluorescent microscopy. J Microsc 129:19–28

    Article  PubMed  CAS  Google Scholar 

  • Barker WB (1930) Lens work of the ancients II: the Nineveh lens. Br J Physiol Opt 4:4–6

    Google Scholar 

  • Bauch H, Schaffer J (2006) Optical sections by means of “structured illumination”: background and application in fluorescence microscopy. Photonik Int 5:86–88

    Google Scholar 

  • Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, Berlin

    Book  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:655–657

    Article  PubMed  CAS  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bossard M (2007) 3D upgrade for optical microscopes. Imaging Microsc 9:66–69

    Article  Google Scholar 

  • Brewster D (1855) On an account of a rock-crystal lens and decomposed glass found in Niniveh. In: Die Fortschritte der Physik im Jahre 1852. Deutsche Physikalische Gesellschaft, vol VIII. Druck und Verlag von Georg Reimer, Berlin pp 355–356

    Google Scholar 

  • Cuche E, Bevilacqua F, Depeursinge C (1999a) Digital holography for quantitative phase-contrast imaging. Opt Lett 24:291–293

    Article  PubMed  CAS  Google Scholar 

  • Cuche E, Marquet P, Depeursinge C (1999b) Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 38:6994–7001

    Article  PubMed  CAS  Google Scholar 

  • Curl CL, Bellair CJ, Harris PJ, Allman BE, Roberts A, Nugent KA, Delbridge LMD (2004) Quantitative phase microscopy – a new tool for investigating the structure and function of unstained live cells. Proc Aust Physiol Pharmacol Soc 34:121–127

    Google Scholar 

  • Danz R, Vogelgsang A, Käthner R (2004) PlasDIC – a useful modification of the differential interference contrast according to Smith/Nomarski in transmitted light arrangement. Photonik 1:42–45

    Google Scholar 

  • Diaspro A (2001) Confocal and two-photon microscopy: foundations. Applications and advances. Wiley-Liss, New York

    Google Scholar 

  • Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184

    Article  CAS  Google Scholar 

  • Egger MD, Petrán M (1967) New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157:305–307

    Article  PubMed  CAS  Google Scholar 

  • Enoch JM (1998) Ancient lenses in art and sculpture and the objects viewed through them dating back 4500years. Proc SPIE 3299:424–430

    Article  Google Scholar 

  • Enoch JM (2000) Duplication of unique optical effects of ancient Egyptian lenses from the IV/V Dynasties: lenses fabricated ca 2620–2400 BC or roughly 4600years ago. Ophthalmic Physiol Opt 20:126–130

    Article  PubMed  CAS  Google Scholar 

  • Ferraro P, Alferi D, De Nicola S, De Petrocellis L, Finizio A, Pierattini G (2006) Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt Lett 31:1405–1407

    Article  PubMed  CAS  Google Scholar 

  • Fittinghoff DN, Wiseman PW, Squier JA (2000) Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy. Opt Express 7:273–279

    Article  PubMed  CAS  Google Scholar 

  • Frieden BR (1967) Optical transfer of the three-dimensional object. J Opt Soc Am 57:56–65

    Article  Google Scholar 

  • Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, New York

    Google Scholar 

  • Graydon O (1998) Medieval lenses exhibit modern performances. Opto Laser Eur 56:7

    Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MGL, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100nm axial resolution. J Microsc 195:10–16

    Article  PubMed  CAS  Google Scholar 

  • Heintzmann R, Jovin TM (2002) Saturated patterned excitation microscopy – a concept for optical resolution improvement. J Opt Soc Am A 19:1599–1609

    Article  Google Scholar 

  • Hell SW (2005) Fluorescence nanoscopy: breaking the diffraction barrier by the RESOLFT concept. Nanobiotechnology 1:296–297

    Article  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Hell SW, Stelzer EHK (1992) Properties of a 4Pi-confocal fluorescence microscope. J Opt Soc Am A 9:2159–2166

    Article  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  PubMed  CAS  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  PubMed  CAS  Google Scholar 

  • Hoffman R, Gross L (1975) The modulation contrast microscope. Nature 254:586–588

    Article  PubMed  CAS  Google Scholar 

  • Inoué S (2008) Microtubule dynamics in cell division: exploring living cells with polarized light microscopy. Annu Rev Cell Dev Biol 24:1–27

    Article  PubMed  Google Scholar 

  • Kaminksy W, Jin LW, Powell S, Maezawa I, Claborn K, Branham C, Kahr B (2006) Polarimetric imaging of amyloid. Micron 37:324–338

    Article  PubMed  Google Scholar 

  • Kino GS, Corle TR (1996) Confocal scanning optical microscopy and related imaging systems. Academic, San Diego

    Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Lyot B (1933) Optical apparatus with wide field using interference of polarized light. C R Hebd Seances Acad Sci 197:1593–1595

    Google Scholar 

  • Massoumian F, Juskaitis R, Neil MAA, Wilson T (2003) Quantitative polarized light microscopy. J Microsc 209:13–22

    Article  PubMed  CAS  Google Scholar 

  • Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905–1907

    Article  PubMed  CAS  Google Scholar 

  • Nielsen T, Fricke M, Hellweg D, Andresen P (2001) High efficiency beam splitter for multifocal multiphoton microscopy. J Microsc 201:368–376

    Article  PubMed  CAS  Google Scholar 

  • Nomarski G (1955) Microinterféromètre différentiel à ondes polarisées. J Phys Radium 16:9–13

    Google Scholar 

  • Oron D, Tal E, Silberberg Y (2005) Scanningless depth-resolved microscopy. Opt Express 13:1468–1476

    Article  PubMed  Google Scholar 

  • Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New York

    Book  Google Scholar 

  • Plantzos D (1997) Crystals and lenses in the Graeco-Roman world. Am J Archaeol 101:451–464

    Article  Google Scholar 

  • Pohl D (1991) Scanning near-field optical microscopy (SNOM). Adv Opt Electron Microsc 12:243–312

    Google Scholar 

  • Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I, Helminen HJ, Hyttinen MM (2008) Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech 71:279–287

    Article  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  PubMed  CAS  Google Scholar 

  • Saggau P, Bansal V (2006) Confocal microscope records living cells with high spatio-temporal resolution. SPIE Newsroom doi: 10.1117/2.1200608.0363

    Google Scholar 

  • Schmidt O, Wilms KH, Lingelbach B (1999) The Visby lenses. Optom Vis Sci 76:624–630

    Article  PubMed  CAS  Google Scholar 

  • IMSS Istituto e Museo di Storia della Scienza (2007) http://brunelleschi.imss.fi.it/esplora/microscopio/dswmedia/storia/estoria1.html

  • Sheppard CJR (1986a) The spatial frequency cut-off in three-dimensional imaging. Optik 72:131–133

    CAS  Google Scholar 

  • Sheppard CJR (1986b) The spatial frequency cut-off in three dimensional imaging II. Optik 74:128–129

    Google Scholar 

  • Sheppard CJR, Mao XQ (1988) Confocal microscopes with slit apertures. J Mod Opt 35:1169–1185

    Article  Google Scholar 

  • Sheppard CJR, Shotton DM (1997) Confocal laser scanning microscopy. BIOS Scientific, Oxford

    Google Scholar 

  • Shotton DM (1995) Electronic light microscopy: present capabilities and future prospects. Histochem Cell Biol 104:97–137

    Article  PubMed  CAS  Google Scholar 

  • Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688

    Article  PubMed  Google Scholar 

  • Tanaami T, Otsuki S, Tomosada N, Kosugi Y, Shimizu M, Ishida H (2002) High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl Opt 41:4704–4708

    Article  PubMed  Google Scholar 

  • Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth WJ, Ortigosa-Blanch A, Knight JC, Birks TA, Man TPM, Russell PSJ (2002) Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J Opt Soc Am B 19:2148–2155

    Article  CAS  Google Scholar 

  • Wehner E (2003) PlasDIC, an innovative relief contrast for routine observation in cell biology. Imaging Microsc 4:23

    Google Scholar 

  • Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903

    Article  PubMed  Google Scholar 

  • Wilson T, Sheppard CJR (1984) Theory and practice of scanning optical microscopy. Academic, London

    Google Scholar 

  • Zernike F (1955) How I discovered phase contrast. Science 121:345–349

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Quercioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Quercioli, F. (2011). Fundamentals of Optical Microscopy. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_1

Download citation

Publish with us

Policies and ethics