Skip to main content

Overview and Highlights of WOLEDs and Organic Solar Cells: From Research to Applications

  • Chapter
  • First Online:
WOLEDs and Organic Photovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Solid-state organic devices are at the vanguard of new generation of electronic components owing to their promise to be easily manufactured onto flexible substrates that potentially reduce the mass production cost for large modules. With the great efforts on improving the power efficiency that meets the realistic requirements for commercial applications, white organic light-emitting devices (WOLEDs) and organic solar cells have attracted much attention over the past two decades and are targeted as the effective ways for reducing the energy consumption and developing renewable energy in the world. Because of their great potentials to generate tremendous savings in both cost and energy usage, WOLEDs are considered as new generations of solid-state lighting sources to replace the incandescent bulbs, while organic solar cells are the most promising candidates to complement the inorganic silicon solar cells for electricity generation. Here, we will provide a survey on the recent developments of WOLEDs and organic solar cells and their current status in these fields. Resistances and hampers to the widespread acceptances of these two areas of developments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Energy Information Administration, International Energy Outlook 2009 (August 2009)

    Google Scholar 

  2. US Energy Information Administration, Annual Energy Outlook 2009 (March 2009)

    Google Scholar 

  3. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595

    Article  Google Scholar 

  4. US Energy Information Administration, Annual Energy Review 2006 (June 2007)

    Google Scholar 

  5. US Department of Energy (2002) National lighting inventory and energy consumption estimate, vol 1. Navigant Consulting, Washington DC

    Google Scholar 

  6. Reinkek S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238

    Article  Google Scholar 

  7. Su SJ, Gonmori E, Sasabe H et al (2008) Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20:4189–4194

    CAS  Google Scholar 

  8. Schwartz G, Reineke S, Walzer K et al (2008) Reducing efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes. Appl Phys Lett 92:053311

    Article  Google Scholar 

  9. Forrest SR, Bradley DDC, Thompson ME (2003) Measuring the efficiency of organic light-emitting devices. Adv Mater 15:1043–1048

    Article  CAS  Google Scholar 

  10. Commission Internationale de L’éclairage (CIE) (1986) Colorimetry, Publication Report No. 15.2

    Google Scholar 

  11. Borbély Á, Sámson Á, Schanda J (2001) The concept of correlated color temperature revisited. Color Res Appl 26:450–457

    Article  Google Scholar 

  12. Commission Internationale de L’éclairage (CIE) (1974) Method of measuring and specifying color rendering properties of light sources, Publication Report No. 13.2

    Google Scholar 

  13. Joint ISO/CIE Standard: CIE standard illuminants for colorimetry provide explanations and descriptions of the CIE standard illuminants. ISO 10526:1999/CIE S005/E-1998

    Google Scholar 

  14. D’Andrade BW, Holmes RJ, Forrest SR (2004) Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 16:624–628

    Article  Google Scholar 

  15. Lee MT, Lin JS, Chu MT et al (2008) Improvement in carrier transport and recombination of white phosphorescent organic light-emitting devices using a composite blue emitter. Appl Phys Lett 93:133306

    Article  Google Scholar 

  16. Eom SH, Zheng Y, Wrzesniewski E et al (2009) White phosphorescent organic light-emitting devices with dual triple-doped emissive layers. Appl Phys Lett 94:153303

    Article  Google Scholar 

  17. Wang Q, Ding J, Ma D et al (2009) Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis. Adv Funct Mater 19:84–95

    Article  Google Scholar 

  18. Wang Q, Ding J, Ma D et al (2009) Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off. Appl Phys Lett 94:103503

    Article  Google Scholar 

  19. Sun Y, Giebink NC, Kanno H et al (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908–912

    Article  CAS  Google Scholar 

  20. Schwartz G, Fehse K, Pfeiffer M et al (2006) Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions. Appl Phys Lett 89:083509

    Article  Google Scholar 

  21. Sun Y, Forrest SR (2007) High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl Phys Lett 91:263503

    Article  Google Scholar 

  22. Schwartz G, Pfeiffer M, Reineke S et al (2007) Harvesting triplet excitons for fluorescent blue emitters in white organic light-emitting diodes. Adv Mater 19:3672–3676

    Article  CAS  Google Scholar 

  23. Chang CH, Lin YH, Chen CC et al (2009) Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange-red osmium complex. Org Electron 10:1235–1240

    Article  CAS  Google Scholar 

  24. Luo J, Li X, Hou Q et al (2007) High-efficiency white-light emission from a single copolymer: fluorescence blue, green, and red chromophores on a conjugated polymer backbone. Adv Mater 19:1113–1117

    Article  CAS  Google Scholar 

  25. Liu J, Shao SY, Chen L et al (2007) White electroluminescence from a single polymer system: improved performance by means of enhanced efficiency and red-shifted luminescence of the blue-light-emitting species. Adv Mater 19:1859–1863

    Article  CAS  Google Scholar 

  26. Thompson J, Blyth RIR, Mazzeo M et al (2001) White light emission from blends of blue-emitting organic molecules: a general route to the white organic light-emitting diode? Appl Phys Lett 79:560–562

    Article  CAS  Google Scholar 

  27. D’Andrade BW, Brooks J, Adamovich V et al (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14:1032–1036

    Article  Google Scholar 

  28. Williams EL, Haavisto K, Li J et al (2007) Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency. Adv Mater 19:197–202

    Article  CAS  Google Scholar 

  29. Mazzeo M, Pisignano D, Della Sala F et al (2003) Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. Appl Phys Lett 82:334–336

    Article  CAS  Google Scholar 

  30. Palilis C, Mäkinen AJ, Uchida M et al (2003) Highly efficient molecular organic light-emitting diodes based on exciplex emission. Appl Phys Lett 82:2209–2211

    Article  CAS  Google Scholar 

  31. Tong QX, Lai SL, Chan MY et al (2007) High-efficiency nondoped white organic light-emitting devices. Appl Phys Lett 91:023503

    Article  Google Scholar 

  32. Kido J, Nakada T, Endo J et al (2002) High efficiency organic EL devices having charge generation layer. In: Neyts K, De Visschere P, Poelman D (eds) Proceedings of the 11th international workshop on inorganic and organic electroluminescence and 2002 international conference on the science and technology of emissive displays and lighting, Universiteit Ghent, Ghent, Belgium 2002, p 539

    Google Scholar 

  33. Liao LS, Klubek KP, Tang CW (2004) High-efficiency tandem organic light-emitting diodes. Appl Phys Lett 84:167–169

    Article  CAS  Google Scholar 

  34. Tsutsui T, Terai M (2004) Electric field-assisted bipolar charge spouting in organic thin-film diodes. Appl Phys Lett 84:440–442

    Article  CAS  Google Scholar 

  35. Lai SL, Chan MY, Fung MK et al (2007) Copper hexadecafluorophthalocyanine and copper phthalocyanine as a pure organic connecting unit in blue tandem organic light-emitting devices. J Appl Phys 101:014509

    Article  Google Scholar 

  36. Chan MY, Lai SL, Lau KM et al (2007) Influences of connecting unit architecture on the performance of tandem organic light-emitting devices. Adv Funct Mater 17:2509–2514

    Article  CAS  Google Scholar 

  37. Krummacher BC, Choong V-E, Mathai MK et al (2006) Highly efficient white organic light-emitting diode. Appl Phys Lett 88:113506

    Article  Google Scholar 

  38. Ji W, Zhang L, Gao R et al (2008) Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment. Opt Express 16:15489–15494

    Article  CAS  Google Scholar 

  39. NanoMarkets LC, OLED Lighting Markets 2008 (September 2008)

    Google Scholar 

  40. US Department of Energy, Solid-State Lighting Research and Development Portfolio: Technology Research and Development Plan FY’07-FY’12., Navigant Consulting, Inc. and Radcliffe Advisors (January 2007)

    Google Scholar 

  41. Optrex Europe GmbH homepage (http://www.optrex.de)

  42. OSRAM homepage (http://www.osram-os.com/appsos/showroom/)

  43. Global Research Blog website (http://ge.geglobalresearch.com/blog/worlds-first-demonstration-of-roll-to-roll-processed-oleds/)

  44. eMercedesBenz website (http://www.emercedesbenz.com)

  45. Yano Research Institute Ltd, World Solar Cell Market: Key Research Findings 2009 (http://www.yanoresearch.com). Figures are reproduced with permission from Yano Research Institute

  46. LG Electronics website (http://www.lge.com)

  47. Eindhoven University of Technology (2008, May 14). New world record for important class of solar cells

    Google Scholar 

  48. National Renewable Energy Laboratory (NREL) Newsroom, NREL of the US Department of Energy (http://www.nrel.gov/news/)

  49. University of Delaware (2007, July 23). UD-led team sets solar cell record, joins Dupont on $100 million project

    Google Scholar 

  50. Wadell AL, Forrest SR (2006) High power organic solar cells from efficient utilization of near-infrared solar energy. Mater Eng News pp 10–11

    Google Scholar 

  51. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Article  CAS  Google Scholar 

  52. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Article  CAS  Google Scholar 

  53. Yang F, Forrest SR (2008) Photocurrent generation in nanostructured organic solar cells. ACS Nano 2:1022–1032

    Article  CAS  Google Scholar 

  54. Rand BP, Genoe J, Heremans P et al (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 15:659–676

    Article  CAS  Google Scholar 

  55. Scharber MC, Mühlbacher D, Koppe M et al (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18:789–794

    Article  CAS  Google Scholar 

  56. Rand BP, Burk DP, Forrest SR (2007) Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev 75:115327

    Article  Google Scholar 

  57. Nunzi JM (2002) Organic photovoltaic materials and devices. C R Phys 3:523–542

    Article  CAS  Google Scholar 

  58. Rostalski J, Meissner D (2000) Monochromatic versus solar efficiencies of organic solar cells. Sol Energy Mater Sol Cells 61:87–95

    Article  CAS  Google Scholar 

  59. Onsager L (1938) Initial recombination of ions. Phys Rev 54:554–557

    Article  CAS  Google Scholar 

  60. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  CAS  Google Scholar 

  61. Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl Phys Lett 79:126–128

    Article  CAS  Google Scholar 

  62. Uchida S, Xue J, Rand BP et al (2004) Organic small molecular solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl Phys Lett 84:4218–4220

    Article  CAS  Google Scholar 

  63. Vogel M, Doka S, Breyer Ch, Lux-Steiner MCh, Fostiropoulos K (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89:163501

    Article  Google Scholar 

  64. Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–162

    Article  CAS  Google Scholar 

  65. Xue J, Uchida S, Rand BP et al (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85:5757–5759

    Article  CAS  Google Scholar 

  66. Shao Y, Sista S, Chu CW et al (2007) Enhancement of tetracene photovoltaic devices with heat treatment. Appl Phys Lett 90:103501

    Article  Google Scholar 

  67. Mayer AC, Lloyd MT, Herman DJ (2004) Postfabrication annealing of pentacene-based photovoltaic cells. Appl Phys Lett 85:6272–6274

    Article  Google Scholar 

  68. Yoo S, Domercq B, Kippelen B (2004) Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl Phys Lett 85:5427–5429

    Article  CAS  Google Scholar 

  69. Potscavage WJ, Yoo S, Domercq B et al (2007) Encapsulation of pentancene/C60 organic cells with Al2O3 deposited by atomic layer deposition. Appl Phys Lett 90:253511

    Article  Google Scholar 

  70. Kim JY, Kim SH, Lee HH et al (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576

    Article  CAS  Google Scholar 

  71. Liang Y, Wu Y, Feng D et al (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57

    Article  CAS  Google Scholar 

  72. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88

    Article  CAS  Google Scholar 

  73. Li G, Shrotriya V, Huang J et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  74. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics. doi:10.1038/NPHOTON.2009.69

    Google Scholar 

  75. Peet J, Kim JY, Coates NE et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  CAS  Google Scholar 

  76. Peumans P, Forrest SR (2004) Separation of geminate charge-pairs at donor-acceptor interfaces in disordered solid. Chem Phys Lett 398:27–31

    Article  CAS  Google Scholar 

  77. Djurovich PI, Mayo EI, Forrest SR et al (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515–520

    Article  CAS  Google Scholar 

  78. Hänsel H, Zettl H, Krausch G et al (2003) Optical and electrical contributions in double-heterojunction organic thin-film solar cells. Adv Mater 15:2056–2060

    Article  Google Scholar 

  79. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. J Appl Phys 90:3632–3641

    Article  Google Scholar 

  80. Chan MY, Lai SL, Lau KM et al (2006) Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices. Appl Phys Lett 89:163515

    Article  Google Scholar 

  81. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  CAS  Google Scholar 

  82. Brabec CJ, Zerza G, Cerullo G et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236

    Article  CAS  Google Scholar 

  83. Shaheen SE, Brabec CJ, Sariciftci NS et al (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  CAS  Google Scholar 

  84. Rand BP, Xue J, Uchida S et al (2005) Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Materials properties. J Appl Phys 98:124902

    Article  Google Scholar 

  85. Mühlbacher D, Scharber M, Morana M et al (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889

    Article  Google Scholar 

  86. Hou J, Chen HY, Zhang S et al (2008) Synthesis, characterization, and photovoltaic properties of a low bandgap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole. J Am Chem Soc 130:16144–16145

    Article  CAS  Google Scholar 

  87. Kido J, Nakada T, Endo J et al (2002) High efficiency organic EL devices having charge generation layer. In: Neyts K, De Visschere P, Poelman D (eds) Proceedings of the 11th international workshop on inorganic and organic electroluminescence and 2002 international conference on the science and technology of emissive displays and lighting, Universiteit Ghent, Ghent, Belgium, p 539

    Google Scholar 

  88. Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the University Grants Committee Areas of Excellence Scheme (AoE/P-03/08) and the Strategic Research Theme on Molecular Materials of The University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Wing-Wah Yam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, M.MY., Tao, CH., Yam, V.WW. (2010). Overview and Highlights of WOLEDs and Organic Solar Cells: From Research to Applications. In: Yam, V. (eds) WOLEDs and Organic Photovoltaics. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14935-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14935-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14934-4

  • Online ISBN: 978-3-642-14935-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics