Skip to main content

Techniques Toward High Speed Operation of Semiconductor Optical Amplifiers

  • Chapter
  • First Online:
Nanostructure Semiconductor Optical Amplifiers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 964 Accesses

Abstract

In this section some theoretical and experimental techniques will be presented to increase the gain and phase recovery time and speed up the Semiconductor Optical Amplifier (SOA) operation. These methods include the regular bulk SOAs and also quantum dot SOAs (QD-SOAs). However one can generalize these techniques to quantum-well SOAs (QW-SOAs) either.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, H., Wang, Q., Dong, H., Zhu, G., Dutta, N.K., Jaques, J.: Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir. IEEE Photon. Technol. Lett. 18, 196–198 (2006)

    Article  Google Scholar 

  2. Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)

    Article  Google Scholar 

  3. Furata, T.: High Field Minority Electron Transport in GaAs in Semiconductors and Semimetals. Academic, New York (1993)

    Google Scholar 

  4. Reschner, D.W., Gehrig, E., Hess, O.: Pulse amplification and spatio-spectral hole-burning in inhomogeneously broadened quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45, 21–33 (2009)

    Article  Google Scholar 

  5. Berg, T.W., Mørk, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40, 1527–1539 (2004)

    Article  Google Scholar 

  6. Sosnowski, T.S., Norris, T.B., Jiang, H., Singh, J., Kamath, K., Bhattacharya, P.: Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy. Phys. Rev. B 57, R9423–R9426 (1998)

    Article  Google Scholar 

  7. Agrawal, G.P., Dutta, N.K.: Semiconductor Lasers. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  8. Mecozzi, A., Møork, J.: Saturation effect in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifier. IEEE J. Select. Topics Quantum Electron. 3, 1190–1207 (1997)

    Article  Google Scholar 

  9. Tang, J.M., Shore, K.A.: Characteristic of optical phase conjugation of picosecond pulses in semiconductor optical amplifiers. IEEE J. Quantum Electron. 35, 1032–1040 (1999)

    Article  Google Scholar 

  10. Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B Condens. Matter 69, 235332-1–235332-39 (2004)

    Google Scholar 

  11. Manning, R.J., Davies, D.A.O.: Three-wavelength device for all-optical signal processing. Opt. Lett. 19, 889–891 (1994)

    Article  Google Scholar 

  12. Inoue, K., Yoshino, M.: Gain dynamics of a saturated semiconductor laser amplifier with 1.47-μm ld pumping. IEEE Photon. Technol. Lett. 8, 506–508 (1996)

    Article  Google Scholar 

  13. Usami, M., Tsurusawa, M., Matsushima, Y.: Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier. Appl. Phys. Lett. 72, 2657–2659 (1998)

    Article  Google Scholar 

  14. Dupertuis, M.A., Pleumeekers, J.L., Hessler, T.P., Selbmann, P.E., Deveaud, B., Dagens, B., Emery, J.Y.: Extremely fast high-gain and low-current soa by optical speed-up at transparency. IEEE Photon. Technol. Lett. 12, 1453–1455 (2000)

    Article  Google Scholar 

  15. Tai, C., Tzeng, S.L., Chang, H.C., Way, W.I.: Reduction of nonlinear distortion in MQW semiconductor optical amplifier using light injection and its application in multichannel m-qam signal transmission systems. IEEE Photon. Technol. Lett. 10, 609–611 (1998)

    Article  Google Scholar 

  16. Yoshino, M., Inoue, K.: Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection. IEEE Photon. Technol. Lett. 8, 58–59 (1996)

    Article  Google Scholar 

  17. Yu, J., Jeppesen, P.: Improvement of cascaded semiconductor optical amplifier gates by using holding light injection. J. Lightwave Technol. 19, 614–623 (2001)

    Article  Google Scholar 

  18. Ho, K.-P., Liaw, S.-K., Lin, C.: Reduction of semiconductor laser amplifier induced distortion and crosstalk for wdm systems using light injection. Electron. Lett. 32, 2210–2211 (1996)

    Article  Google Scholar 

  19. Pleumeekers, J.L., Kauer, M., Dreyer, K., Burrus, C., Dentai, A.G., Shunk, S., Leuthold, J., Joyner, C.H.: Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Technol. Lett. 14, 12–14 (2002)

    Article  Google Scholar 

  20. Talli, G., Adams, M.J.: Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam. Opt. Commun. 245, 363–370 (2005)

    Article  Google Scholar 

  21. Talli, G., Adams, M.J.: Gain dynamics of semiconductor optical amplifiers and three-wavelength devices. IEEE J. Quantum. Electron. 39, 1305–1313 (2003)

    Article  Google Scholar 

  22. Liu, Y., Tangdiongga, E., Li, Z., Zhang, S., Waardt, H., Khoe, G.D., Dorren, H.J.S.: Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE J. Lightwave Technol. 24, 230–236 (2006)

    Article  Google Scholar 

  23. Chayett, H., Ben Ezra, S., Shachar, N., Tzadok, S., Tsadka, S., Leuthold, J.: Regenerative all-optical wavelength converter based on semiconductor optical amplifier and sharp frequency response. In: Optical Fiber Communication (OFC), Los Angeles, CA, Paper Ths2 (2004)

    Google Scholar 

  24. Nielsen, M.L., Lavigne, B., Dagens, B.: Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using bandpass filtering. Electron. Lett. 39, 1334–1335 (2003)

    Article  Google Scholar 

  25. Leuthold, J., Marom, D.M., Cabot, S., Jaques, J.J., Ryf, R., Giles, C.R.: All-optical wavelength conversion using a pulse reformatting optical filter. J. Lightwave Technol. 22, 186–192 (2004)

    Article  Google Scholar 

  26. Liu, Y., Tangdiongga, E., Li, Z., Zhang, S., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: 160 Gb/s SOA-ased wavelength converter assisted by an optical bandpass filter. In: Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, PDP17 (2005)

    Google Scholar 

  27. Mark, J., Mørk, J.: Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory. Appl. Phys. Lett. 61, 2281–2283 (1992)

    Article  Google Scholar 

  28. Liu, Y., Tangdiongga, E., Li, Z., Zhang, S., de Waardt, H., Khoe, G.D., Dorren, H.J.S.: Error-free 320Gbit/s SOA based wavelength conversion using optical filtering. In: Proceedings of OFC/NFOEC, Anaheim, CA, USA, paper PDP28 (2006)

    Google Scholar 

  29. Nielsen, M., Mork, J.: Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. J.Opt. Soc. Am. B 21, 1606–1619 (2004)

    Article  Google Scholar 

  30. Leuthold, J.: Trends in the field of all-optical wavelength conversion and regeneration for communication up to 160 Gbit/s. In: Proceedings of ECOC, Glasgow, paper Tu3.3.6 (2005)

    Google Scholar 

  31. Manning, R.J.: Cancellation of nonlinear patterning in semiconductor amplifier based switches. In: Proceedings of OAA, Whistler, Canada, paper OTuC1 (2006)

    Google Scholar 

  32. Giller, R.: Recovery dynamics of the Turbo-Switch. In: Proceedings of OAA, Whistler, Canada, paper OTuC2 (2006)

    Google Scholar 

  33. Manning, R.J., Giller, R., Yang, X., Webb, R.P., Cotter, D.: SOAs for all-optical switching-techniques for increasing the speed. IEEE ICTON 2007, 239–242 (2007)

    Google Scholar 

  34. Zhang, L.: Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW. In: Proceedings of ECOC, Cannes, France, paper Tu4.4.5 (2006)

    Google Scholar 

  35. Dagens, B.: Design optimization of all-active Mach-Zehnder wavelength converters. Photon. Technol. Lett. 11, 424–426 (1999)

    Article  Google Scholar 

  36. Miyazaki, Y.: Polarization-insensitive SOA-MZI monolithic all-optical wavelength converter for full C-band 40Gbps-NRZ operation. In: Proceedings of ECOC, Cannes, France, paper Th3.4.2 (2006)

    Google Scholar 

  37. Giller, R., Manning, R.J., Talli, G., Webb, R.P., Adams, M.J.: Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds. Opt. Exp. 15, 1773–1782 (2007)

    Article  Google Scholar 

  38. Sokoloff, J.P., Prucnal, P.R., Glesk, I., Kane, M.: A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon. Technol. Lett. 5, 787–790 (1993)

    Article  Google Scholar 

  39. Zhang, L., Kang, I., Bhardwaj, A., Sauer, N., Cabot, S., Jaques, J., Nielson, D.T.: Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. Photon. Technol. Lett. 18, 2323–2325 (2006)

    Article  Google Scholar 

  40. Ginovart, F., Simon, J.C.: Semiconductor optical amplifier length effects on gain dynamics. J. Phys. D Appl. Phys. 36, 1473–1476 (2003)

    Article  Google Scholar 

  41. Schares, L., Schubert, C., Schmidt, C., Weber, H.G., Occhi, L., Guekos, G.: Phase dynamics of semiconductor optical amplifiers at 10–40 GHz. J. Quantum. Electron. 39, 1394–1408 (2003)

    Article  Google Scholar 

  42. Li, X., Alexandropoulos, D., Adams, M.J., Lealman, I.F.: Wavelength dependence of gain recovery time in semiconductor optical amplifiers. In: Proceedings of SPIE, vol 5722, pp. 343–350 (2005)

    Google Scholar 

  43. Ito, T., Yoshimoto, N., Magari, K., Kishi, K., Kondo, Y.: Extremely low power consumption semiconductor optical amplifier gate for WDM applications. Electron. Lett. 33, 1791–1792 (1997)

    Article  Google Scholar 

  44. Ju, H., Uskov, A.V., Nötzel, R., Li, Z., V′azquez, J., Lenstra, D., Khoe, G.D., Dorren, H.J.S.: Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers. Appl. Phys. B 82, 615–620 (2006)

    Article  Google Scholar 

  45. Rostami, A., Baghban, H., Qartavol, R.M., Rasooli, H.: Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46, 354–360 (2010)

    Article  Google Scholar 

  46. Uskov, A.V., Berg, T.W., Mørk, J.: Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 40, 306–320 (2004)

    Article  Google Scholar 

  47. Ben-Ezra, Y., Haridim, M., Lembrikov, B.I.: Theoretical analysis of gain-recovery time and chirp in QD-SOA. IEEE Photon. Technol. Lett. 17, 1803–1805 (2005)

    Article  Google Scholar 

  48. Annetts, P.J., Asghari, M., White, I.H.: The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers. IEEE J. Select. Topics Quantum Electron. 3, 320–329 (1997)

    Article  Google Scholar 

  49. Watanabe, T., Sakaida, N., Yasaka, H., Kano, F., Koga, M.: Transmission performance of chirp controlled signal by using semiconductor optical amplifier. J. Lightwave Technol. 18, 1069–1077 (2000)

    Article  Google Scholar 

  50. Uskov, A.V., McInerney, J., Adler, F., Schweizer, H., Pulkuhn, M.H.: Auger carrier capture kinetics in self-assembled quantum dot structures. Appl. Phys. Lett. 72, 58–60 (1998)

    Article  Google Scholar 

  51. Bhattacharya, P., Klotzkin, D., Qasaimeh, O., Zhou, W., Krishna, S., Zhu, D.: High speed modulation and switching characteristics of InGaAs-AlGaAs self organized quantum dot lasers. IEEE J. Select. Topics Quantum Electron. 6, 426–438 (2000)

    Article  Google Scholar 

  52. Sun, H., Wang, Q., Dong, H., Dutta, N.K.: XOR performance of a quantum dot semiconductor optical amplifier based Mach–Zender interferometer. Opt. Exp. 13, 1892–1899 (2005)

    Article  Google Scholar 

  53. Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45, 34–41 (2009)

    Article  Google Scholar 

  54. Steiner, T. (ed.): Semiconductor Nanostructures for Optoelectronic Applications. Artech House, London (2004)

    Google Scholar 

  55. Asryan, L., Suris, R.: Longitudinal spatial hole burning in a quantum-dot lasers. IEEE J. Select. Topics Quantum Electron. 36, 1151–1160 (2000)

    Article  Google Scholar 

  56. Qasaimeh, O.: Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifier. IEEE Photon. Technol. Lett. 16, 542–544 (2004)

    Article  Google Scholar 

  57. Qasaimeh, O.: Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 39, 793–798 (2003)

    Article  Google Scholar 

  58. Newell, T.C., Bossert, D.J., Stinz, A., Fuchs, A., Malloy, K.J.: Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett. 11, 1527–1529 (1999)

    Article  Google Scholar 

  59. Dagens, B., Markus, A., Chen, J.X., Provost, J.-G., Make, D., de Gouezigou, O., Landreau, J., Fiore, A., Thedrez, B.: Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser. Electron. Lett. 41, 323–324 (2005)

    Article  Google Scholar 

  60. Agrawal, G.P.: Fiber Optic Communication Systems. John Wiley, New York (2002)

    Book  Google Scholar 

  61. Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, F., Mao, H.M., Bimberg, D.: Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers. Phys. Status. Solidi. B 224, 419–423 (2001)

    Article  Google Scholar 

  62. Meuer, C., Kim, J., Laemmlin, M., Liebich, S., Capua, A., Eisenstein, G., Kovsh, A.R., Mikhrin, S.S., Krestnikov, I.L., Bimberg, D.: Static gain saturation in quantum dot semiconductor optical amplifiers. Opt. Exp. 16, 8269–8279 (2008)

    Article  Google Scholar 

  63. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Excited-state gain dynamics in InGaAs quantum-dot amplifiers. J. Lightwave Technol. 17, 2014–2016 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Maram, R. (2011). Techniques Toward High Speed Operation of Semiconductor Optical Amplifiers. In: Nanostructure Semiconductor Optical Amplifiers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14925-2_3

Download citation

Publish with us

Policies and ethics