Skip to main content

Molecule-Assisted Transport of Charges and Energy Across Donor–Wire–Acceptor Junctions

  • Chapter
  • First Online:
Testing Molecular Wires

Part of the book series: Springer Theses ((Springer Theses))

  • 507 Accesses

Abstract

The previous sections demonstrated that charge-transfer and energy-transfer processes are characterized by many different parameters. We cannot limit ourselves to the molecular building blocks of a system. Instead, the entire supramolecular structure should be analyzed as a whole system. Only this assists in gathering a sufficient understanding of the interplay between the components. In particular, a close inspection reveals that the energetics and the relationship of the energy-levels of donor, bridge and acceptor govern the energy/charge transfer properties of these systems. However, the key roles in these transport processes are played by the molecular bridges connecting the donor with the acceptor. In the following we survey these processes with particular emphasis on the function of the bridges, or, in other words, on their molecular wire properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emberly EG, Kirczenow G (1998) Phys Rev B 58:10911

    Article  CAS  Google Scholar 

  2. Nitzan A, Ratner MA (2003) Science Washington DC, US 300:1384

    Article  CAS  Google Scholar 

  3. Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Nature 396:60

    Article  CAS  Google Scholar 

  4. Schatz GC, Ratner MA (2002) Quantum mechanics in chemistry, 2 edn. Dover Pub- lications, Mineola, New York

    Google Scholar 

  5. Linderberg J, Ohrn Y (2004) Propagators in quantum chemistry. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  6. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York

    Google Scholar 

  7. Jortner J (1976) J Chem Phys 64:4860

    Article  CAS  Google Scholar 

  8. Ratner MA, Sutin N (1986) Biochim Biophys Acta 811:265

    Google Scholar 

  9. Kramers KH (1934) Physica 1:182

    Article  CAS  Google Scholar 

  10. Anderson PW (1950) Phys Rev Lett 79:350

    Google Scholar 

  11. Anderson PW (1959) Phys Rev Lett 115:2

    CAS  Google Scholar 

  12. Nitzan A (2001) Annu Rev Phys Chem 52:681

    Article  CAS  Google Scholar 

  13. Berlin YA, Burin AL, Ratner MA (2002) Chem Phys 275:61

    Article  CAS  Google Scholar 

  14. Grozema FC, Berlin YA, Siebbeles LDA (2000) J Am Chem Soc 122:10903

    Article  CAS  Google Scholar 

  15. Finklea HO, Hanshewm DD (1992) J Am Chem Soc 114:3173

    Article  CAS  Google Scholar 

  16. Slowiski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910

    Article  Google Scholar 

  17. Chidsey CED (1991) Science Washington DC, US 251:919

    Article  CAS  Google Scholar 

  18. Leland BA, Joran AD, Felker PM, Hopfield JJ, Zewail AH, Dervan PB (1985) J Phys Chem A 89:5571

    CAS  Google Scholar 

  19. Oevering H, Paddon-Row MN, Heppener M, Oliver AM, Cotsaris E, Verhoeven JW, Hush NS (1987) J Am Chem Soc 109:3258

    Article  CAS  Google Scholar 

  20. Closs GL, Miller JR (1988) Science Washington DC, US 240:440

    Article  CAS  Google Scholar 

  21. Klan P, Wagner PJ (1998) J Am Chem Soc 120:2198

    Article  CAS  Google Scholar 

  22. Osuka A, Maruyama K, Mataga N, Asahi T, Yamazaki I, Tamai N (1990) J Am Chem Soc 112:4958

    Article  CAS  Google Scholar 

  23. Helms A, Heiler D, McClendon G (1992) J Am Chem Soc 114:6227

    Article  CAS  Google Scholar 

  24. Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewsi MR (2004) J Am Chem Soc 126:5577

    Article  CAS  Google Scholar 

  25. Osuka A, Satoshi N, Maruyama K, Mataga N, Asahi T, Yamazaki I, Nishimura Y, Onho T, Nozaki K (1993) J Am Chem Soc 115:4577

    Article  CAS  Google Scholar 

  26. Barigelletti F, Flamigni L, Balzani V, Collin J-P, Sauvage J-P, Sour A, Constable EC, Cargill AMW (1994) Thompson. J Am Chem Soc 116:7692

    Article  CAS  Google Scholar 

  27. Creager S, Yu CJ, Bamdad C, O’Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF (1999) J Am Chem Soc 121:1059

    Article  CAS  Google Scholar 

  28. Sachs SB, Dudek SP, Hsung RP, Sita LR, Smalley JF, Newton MD, Feldberg SW, Chidsey CED (1997) J Am Chem Soc 10:563

    Google Scholar 

  29. Sykes HD, Smalley JF, Dudek SP, Cook AR, Newton MD, Chidsey CED, Felberg SW (2001) Science Washington DC, US 291:1519

    Article  Google Scholar 

  30. Martin N, Giacalone F, Segura JL, Guldi DM (2004) Synth Met 147:57

    Article  CAS  Google Scholar 

  31. Atienza C, Martín N, Wielopolski M, Haworth N, Clark T, Guldi DM (2006) Chem Commun (Cambridge, UK) 30:3202

    Article  Google Scholar 

  32. Benniston AC, Goulle V, Harriman A, Lehn J-M, Marczinke B (1994) J Phys Chem A 98:7798

    CAS  Google Scholar 

  33. Osuka A, Tanabe N, Kawabata S, Speiser IS (1996) Chem Rev Washington DC, US 96:195

    Google Scholar 

  34. Marczinke B (1994) J Phys Chem A 98:7798

    Google Scholar 

  35. Osuka A, Tanabe, Kawabata S, Grosshenny IV, Harriman A, Ziessel R (1995) Angew Chem Int Ed 34:1100

    Google Scholar 

  36. Grosshenny IV, Harriman A, Ziessel R (1995) Angew Chem Int Ed 34:2705

    CAS  Google Scholar 

  37. Marcus RA (1987) Chem Phys Lett 133:471

    Article  CAS  Google Scholar 

  38. Ogrodnik A, Michel-Beyerle ME, Naturforsch Z (1989) A Phys Sci 44a:763

    Google Scholar 

  39. Kilsa K, Kajanus J, Macpherson AN, Martensson J, Albinsson B (2001) J Am Chem Soc 123:3069

    Article  CAS  Google Scholar 

  40. Lukas AS, Bushard PJ, Wasielewski MR (2002) J Phys Chem A 106:2074

    Article  CAS  Google Scholar 

  41. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  42. McConnell HM (1961) J Chem Phys 35:508

    Article  CAS  Google Scholar 

  43. Closs GL, Piotrowiak P, McInnis JM, Fleming GR (1988) J Am Chem Soc 110:2652

    Article  CAS  Google Scholar 

  44. Roest MR, Oliver AM, Paddon-Row MN, Verhoeven JW (1997) J Phys Chem A 101:4867

    Article  CAS  Google Scholar 

  45. Paddon-Row MN, Oliver AM, Warman JM, Smit KJ, Haas MP, Oevering H, Verhoeven JW (1988) J Phys Chem A 92:6958

    CAS  Google Scholar 

  46. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:759

    Article  Google Scholar 

  47. Bixon M, Giese B, Langenbacher T, Michel-Beyerle ME, Jortner J (1999) Proc Natl Acad Sci USA 96:11713

    Article  CAS  Google Scholar 

  48. Davis WB, Wasielewski MR, Mujica V, Nitzan A (1997) J Phys Chem A 101:6158

    Article  CAS  Google Scholar 

  49. Kharkats YI, Ulstrup J (1991) Chem Phys Lett 182:81

    Article  CAS  Google Scholar 

  50. Sourtis SS, Mukamel S (1995) Chem Phys 197:367

    Article  Google Scholar 

  51. Felts AK, Pollard WT, Friesner RA (1995) J Phys Chem A 99:2929

    CAS  Google Scholar 

  52. Cave RJ, Newton MD (1996) Chem Phys Lett 249:15

    Article  CAS  Google Scholar 

  53. Creutz C, Newton MD, Sutin N (1994) J Photochem Photobiol A 82:47

    Article  CAS  Google Scholar 

  54. Kumar K, Kurnikov IV, Beratan DN, Waldeck DH, Zimmt MB (1998) J Phys Chem A 102:5529

    Article  CAS  Google Scholar 

  55. Stuchebrukov AA, Marcus RA (1995) J Phys Chem A 99:7581

    Google Scholar 

  56. Golub GH, van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Baltimore

    Google Scholar 

  57. Flannery BP, Teukolsky SA, Vetterlink WT (1988) Numerical recipes. Cambridge Uni- versity Press, Cambridge, UK

    Google Scholar 

  58. Fan F, Yang J, Cai L, Price Jr DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550

    Article  CAS  Google Scholar 

  59. Zangmeister CD, Robey SW, van Zee RD, Yao Y, Tour JM (2004) J Phys Chem B 108:16187

    Article  CAS  Google Scholar 

  60. Zhu XY (2004) J Phys Chem B 108:8778

    Article  CAS  Google Scholar 

  61. Parts a and d (1988) In: Fox MA, Chanon M (eds) Photoinduced Electron Transfer. Elsevier, Amsterdam

    Google Scholar 

  62. Hu X, Schulten K (1997) How nature harvests sunlight. Phys Today 50:28 and references therein

    Google Scholar 

  63. Rice MJ, Gartstein YN (1996) Theory of photoinduced charge transfer in a molecularly doped conjugated polymer. Phys Rev B 53:10764

    Google Scholar 

  64. Wu MW, Conwell EM (1998) Theory of photoinduced charge transfer in weakly coupled donor-acceptor conjugated polymers: application to an meh-ppv:cn-ppv pair. Chem Phys 227:11

    Google Scholar 

  65. Paddon-Row MN (1994) Acc Chem Res 27:18

    Article  CAS  Google Scholar 

  66. Guldi DM (2002) Chem Soc Rev 31:22

    Article  CAS  Google Scholar 

  67. Bixon M, Jortner J (1999) Adv Chem Phys 106:35

    Article  CAS  Google Scholar 

  68. Müller GM, Lupton JM, Feldmann J, Lemmer U, Scharber MC, Sariciftci NS, Brabec CJ, Scherf U (2005) Phys Rev B 72:195208

    Article  Google Scholar 

  69. Marcus RA (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  70. Kavarnos GJ, Turro NJ (1986) Chem Rev Washington DC, US 86:401

    CAS  Google Scholar 

  71. Marcus RA (1993) Angew Chem Int Ed 105:1161

    CAS  Google Scholar 

  72. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology: an introduction to the theory. JohnWiley and Sons Ltd, New York

    Google Scholar 

  73. Marcus RA (1956) J Chem Phys 24:979

    Article  CAS  Google Scholar 

  74. Rehm D, Weller A (1970) Isr J Chem 8:259

    CAS  Google Scholar 

  75. Balzani V, Scandola F (1991) Supramolecular Photochemistry. Horwood, Chichester

    Google Scholar 

  76. Jortner J, Ratner M (eds.) (1997) Molecular Electronics. Blackwell, London

    Google Scholar 

  77. McGlynn SP, Smith FJ, Cilento G. Photochem J (1964) Photobiol A 3:269

    Article  CAS  Google Scholar 

  78. Dewar MJS, Doughtery RC (1975) The PMO Theory of Organic Chemistry. Plenum, New York

    Google Scholar 

  79. Halliday D, Resnick R (1967) Physics. JohnWiley, New York

    Google Scholar 

  80. Dauben W, Salem L, Turro NJ (1975) Acc Chem Res 8:41

    Article  CAS  Google Scholar 

  81. Michl J (1974) Top Curr Chem 46:1

    CAS  Google Scholar 

  82. Michl J (1972) Mol Photochem 4:243

    CAS  Google Scholar 

  83. Devaquet A (1975) Top Curr Chem 54:1

    Article  CAS  Google Scholar 

  84. Dauben W, Salem L (1975) J Am Chem Soc 97:479

    Article  Google Scholar 

  85. Atkins P (1974) Quanta: A Handbook of Concepts. Clarendon Press, Oxford

    Google Scholar 

  86. Förster T (1970) Pure Appl Chem 24:443

    Article  Google Scholar 

  87. Bixon M, Jortner J, Verhoeven JW (1994) J Am Chem Soc 116:7349

    Article  CAS  Google Scholar 

  88. Turro NJ (1978) Modern molecular photochemistry. Benjamin Cummings, Menlo Park

    Google Scholar 

  89. Fleming GR (1986) Chemical Applications of Ultrafast Spectroscopy. Oxford University Press, New York

    Google Scholar 

  90. Kasha M (1995) Faraday Discuss 9:14

    Google Scholar 

  91. Turro NJ (1991) Modern Molecular Photochemistry 2nd edition. University Science Books, Sausalito, California

    Google Scholar 

  92. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH Publishers, Inc., New York

    Google Scholar 

  93. Strickler JS, Berg RA (1962) J Chem Phys 37:814

    Article  CAS  Google Scholar 

  94. Reichardt C (1990) Solvents and Solvent Effects in Organic Chemistry. VCH VerlagsgesellschaftmbH, Weinheim

    Google Scholar 

  95. Raz B, Jortner J (1969) Chem Phys Lett 4:155

    Article  CAS  Google Scholar 

  96. Messing I, Jortner J (1977) Chem Phys 24:183

    Article  CAS  Google Scholar 

  97. Born M (1920) Z Phys Chem (Muenchen, Ger) 1:221

    Google Scholar 

  98. Maroncelli M, MacInnis J, Fleming GR (1989) Science Washington DC, US 243:1674

    Article  CAS  Google Scholar 

  99. Jortner J, Bixon M (1988) J Chem Phys 88:167

    Article  CAS  Google Scholar 

  100. Biswas R, Bagchi B (1999) J Phys Chem A 103:2495

    Article  CAS  Google Scholar 

  101. Rosenthal SJ, Xie X, Du M, Fleming GR (1991) J Chem Phys 95:4715

    Article  CAS  Google Scholar 

  102. Kahlow MA, Kang TJ, Barbara PF (1988) J Chem Phys 90:2372

    Article  Google Scholar 

  103. Walker GC, Åkesson E, Johnson AE, Levinger NE, Barbara PF (1992) Phys Chem Chem Phys 96:3728

    CAS  Google Scholar 

  104. Reynolds L, Gardecki JA, Frankl SJV, Horng ML, Maroncelli M (1996) J Phys Chem A 100:10337

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Wielopolski .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wielopolski, M. (2010). Molecule-Assisted Transport of Charges and Energy Across Donor–Wire–Acceptor Junctions. In: Testing Molecular Wires. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14740-1_4

Download citation

Publish with us

Policies and ethics