Skip to main content

On the Relation between Jumping Emerging Patterns and Rough Set Theory with Application to Data Classification

  • Chapter
Transactions on Rough Sets XII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 6190))

Abstract

Contrast patterns are an essential element of classification methods based on data mining. Among many propositions, jumping emerging patterns (JEPs) have gained significant recognition due to their simplicity and strong discrimination capabilities. This thesis considers JEPs in terms of discovery and classification. The focus is put on their correspondence to the rough set theory. Transformations between transactional data and decision tables allow us to demonstrate relations of JEPs and global/local reducts. As a part of this discussion, we introduce the concept of a jumping emerging pattern with negation (JEPN). Our observations lead to two novel JEP mining methods based on local reducts: global condensation and local projection. Both attempt to decrease dimensionality of subproblems prior to reduct computation. We show that JEP mining can be reduced to the reduct set problem. The latter is addressed with a new approach, called RedApriori, that follows an Apriori candidate generation scheme and employs pruning based on the notion of attribute set dependence. In addition, we discuss different ways of storing pattern collections and propose a CC-Trie, a tree structure that ensures compactness of information and fast pattern lookups.

A classic mining method for highly-supported JEPs employs a structure called a CP-Tree. We show how attribute set dependence can be employed in this approach to extend the pruning capabilities. Moreover, the problem of finding top-k most supported minimal JEPs is proposed. We discuss a solution that gradually raises minimal support while a CPTree is being mined. Small training sets are a challenge in classification. To improve accuracy, we propose AdaAccept, an adaptive classification meta-scheme that analyzes testing instances in turns. It employs an internal classifier with reject option that modifies itself only with accepted instances. Furthermore, we consider a concretization of this scheme in the field of emerging patterns, AdaptiveJEP-Classifier. Two adaptation methods, support adjustment and border recomputation, are put forward. The work has both theoretical and experimental character. The proposed methods and optimizations are evaluated and compared against solutions known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han, J., Kamber, M.: Data mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  3. Suzuki, E.: Autonomous discovery of reliable exception rules. In: KDD, Newport Beach, CA, USA, pp. 259–262. ACM, New York (1997)

    Google Scholar 

  4. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp. 80–86. AAAI Press, New York (1998)

    Google Scholar 

  5. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 369–376. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  6. Baralis, E., Chiusano, S.: Essential classification rule sets. ACM Trans. Database Syst. 29, 635–674 (2004)

    Article  Google Scholar 

  7. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: KDD, San Diego, CA, United States, pp. 43–52. ACM Press, New York (1999)

    Google Scholar 

  8. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 30–42. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Bailey, J., Manoukian, T., Ramamohanarao, K.: Classification using constrained emerging patterns. In: [153], pp. 226–237

    Google Scholar 

  10. Fan, H., Ramamohanarao, K.: Efficiently mining interesting emerging patterns. In: [153], pp. 189–201

    Google Scholar 

  11. Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowl. Inf. Syst. 3, 131–145 (2001)

    Article  MATH  Google Scholar 

  12. Li, J., Wong, L.: Emerging patterns and gene expression data. In: Genome Informatics Workshop, Tokyo, Japan, vol. 12, pp. 3–13. Imperial College Press, London (2001)

    Google Scholar 

  13. Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18, 725–734 (2002)

    Article  Google Scholar 

  14. Yu, L.T.H., lai Chung, F., Chan, S.C.F., Yuen, S.M.C.: Using emerging pattern based projected clustering and gene expression data for cancer detection. In: Conference on Asia-Pacific bioinformatics, Dunedin, New Zealand, pp. 75–84. Australian Computer Society, Inc. (2004)

    Google Scholar 

  15. Yoon, H.S., Lee, S.H., Kim, J.H.: Application of emerging patterns for multi-source bio-data classification and analysis. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 965–974. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demri, S.P., Orlowska, E.S.: Incomplete Information: Structure, Inference, Complexity. Springer, New York (2002)

    Book  MATH  Google Scholar 

  18. Skowron, A.: Rough sets and vague concepts. Fundam. Inf. 64, 417–431 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  20. Skowron, A., Suraj, Z.: Discovery of concurrent data models from experimental tables: A rough set approach. In: KDD, pp. 288–293 (1995)

    Google Scholar 

  21. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  22. Pawlak, Z.: Vagueness and uncertainty: A rough set perspective. Computational Intelligence 11, 232–277 (1995)

    Article  MathSciNet  Google Scholar 

  23. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ziarko, W.: Probabilistic rough sets. In: [154], pp. 283–293

    Google Scholar 

  26. Yao, Y.: Probabilistic rough set approximations. Int. J. Approx. Reasoning 49, 255–271 (2008)

    Article  MATH  Google Scholar 

  27. Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory, pp. 193–236 (1994)

    Google Scholar 

  28. Lingras, P.: Comparison of neofuzzy and rough neural networks. Information Sciences 110, 207–215 (1998)

    Article  MathSciNet  Google Scholar 

  29. Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data mining, rough sets and granular computing. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  30. Yao, Y.: Semantics of fuzzy sets in rough set theory. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Pawlak, Z.: Rough classification. Int. J. Hum.-Comput. Stud. 51, 369–383 (1999)

    Article  Google Scholar 

  32. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set algorithms in classification problem, pp. 49–88 (2000)

    Google Scholar 

  33. Stefanowski, J.: On combined classifiers, rule induction and rough sets. T. Rough Sets 6, 329–350 (2007)

    Google Scholar 

  34. Wojna, A.: Analogy-based reasoning in classifier construction. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (2004)

    Google Scholar 

  35. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24, 833–849 (2003)

    Article  MATH  Google Scholar 

  36. Bhatt, R.B., Gopal, M.: On fuzzy-rough sets approach to feature selection. Pattern Recogn. Lett. 26, 965–975 (2005)

    Article  Google Scholar 

  37. Bazan, J.G., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decisions tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 346–355. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  38. Hirano, S., Tsumoto, S.: Hierarchical clustering of non-euclidean relational data using indiscernibility-level. In: [155], pp. 332–339

    Google Scholar 

  39. Lingras, P., Chen, M., Miao, D.: Precision of rough set clustering. In: [156], pp. 369–378

    Google Scholar 

  40. Chmielewski, M.R., Grzymala-Busse, J.W.: Global discretization of continuous attributes as preprocessing for machine learning. Int. J. Approx. Reasoning 15, 319–331 (1996)

    Article  MATH  Google Scholar 

  41. Nguyen, H.S.: Discretization problem for rough sets methods. In: [157], pp. 545–552

    Google Scholar 

  42. Skowron, A., Synak, P.: Reasoning in information maps. Fundamenta Informaticae 59, 241–259 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Skowron, A., Synak, P.: Hierarchical information maps. In: [154], pp. 622–631

    Google Scholar 

  44. Slezak, D.: Approximate reducts in decision tables. In: International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, vol. 3, pp. 1159–1164 (1996)

    Google Scholar 

  45. Nguyen, H.S., Slezak, D.: Approximate reducts and association rules - correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  46. Slezak, D.: Association reducts: A framework for mining multi-attribute dependencies. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 354–363. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  47. Slezak, D.: Association reducts: Complexity and heuristics. In: [158], pp. 157–164

    Google Scholar 

  48. Slezak, D.: Approximate entropy reducts. Fundam. Inf. 53, 365–390 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets, pp. 142–173 (2003)

    Google Scholar 

  50. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowledge Information Systems 8, 178–202 (2005)

    Article  Google Scholar 

  51. Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: ICDM, pp. 485–488. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  52. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and delta-discriminative emerging patterns. In: Berkhin, P., Caruana, R., Wu, X. (eds.) KDD, pp. 430–439. ACM, New York (2007)

    Google Scholar 

  53. Loekito, E., Bailey, J.: Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) KDD, pp. 307–316. ACM, New York (2006)

    Google Scholar 

  54. Fan, H., Ramamohanarao, K.: Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers. IEEE Trans. on Knowl. and Data Eng. 18, 721–737 (2006)

    Article  Google Scholar 

  55. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Intelligent Decision Support. Handbook of Applications and Advances of of the Rough Sets Theory, pp. 331–362 (1992)

    Google Scholar 

  56. Kryszkiewicz, M.: Algorithms for knowledge reduction in information systems. PhD thesis, Warsaw University of Technology, Institute of Computer Science (1994) (in Polish)

    Google Scholar 

  57. Kryszkiewicz, M., Cichon, K.: Towards scalable algorithms for discovering rough set reducts. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 120–143. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  58. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns without minimum support. In: ICDM, pp. 211–218. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  59. Wang, J., Lu, Y., Tzvetkov, P.: Tfp: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Trans. on Knowl. and Data Eng. 17, 652–664 (2005)

    Article  Google Scholar 

  60. Ramamohanarao, K., Bailey, J., Fan, H.: Efficient mining of contrast patterns and their applications to classification. In: ICISIP, pp. 39–47. IEEE Computer Society, Washington (2005)

    Google Scholar 

  61. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22, 381–405 (2004)

    Article  Google Scholar 

  62. Antonie, M.L., Zaïane, O.R.: Mining positive and negative association rules: An approach for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  63. Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: KDD, Boston, Massachusetts, United States, pp. 54–63. ACM, New York (2000)

    Chapter  Google Scholar 

  64. Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 86–97. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  65. Li, Y., Guan, C.: An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces. Neural Comput. 18, 2730–2761 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jackson, Q., Landgrebe, D.: An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing 39, 2664–2679 (2001)

    Article  Google Scholar 

  67. Qian, X., Bailey, J., Leckie, C.: Mining generalised emerging patterns. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 295–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  68. Ting, R.M.H., Bailey, J.: Mining minimal contrast subgraph patterns. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM. SIAM, Philadelphia (2006)

    Google Scholar 

  69. Dominik, A., Walczak, Z., Wojciechowski, J.: Classification of web documents using a graph-based model and structural patterns. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 67–78. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  70. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: [159], pp. 13–23

    Google Scholar 

  71. Wroblewski, J.: Adaptive methods of object classification. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (2001)

    Google Scholar 

  72. Wroblewski, J.: Finding minimal reducts using genetic algorithm. In: Joint Conference on Information Sciences, Wrightsville Beach, NC, pp. 186–189 (1995)

    Google Scholar 

  73. Bazan, J.G., Szczuka, M.S.: Rses and rseslib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  74. Bazan, J.G.: Approximation inferencing methods for synthesis of decision algorithms. PhD thesis, University of Warsaw, Institute of Mathematics, Computer Science and Mechanics (1998) (in Polish)

    Google Scholar 

  75. Fan, H., Ramamohanarao, K.: An efficient single-scan algorithm for mining essential jumping emerging patterns for classification. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 456–462. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  76. Terlecki, P., Walczak, K.: Jumping emerging pattern induction by means of graph coloring and local reducts in transaction databases. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 363–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  77. Terlecki, P., Walczak, K.: Local projection in jumping emerging patterns discovery in transaction databases. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 723–730. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  78. Terlecki, P., Walczak, K.: Jumping emerging patterns with negation in transaction databases - classification and discovery. Information Sciences 177, 5675–5690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Li, J., Ramamohanarao, K., Dong, G.: The space of jumping emerging patterns and its incremental maintenance algorithms. In: Langley, P. (ed.) ICML, pp. 551–558. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  80. Wang, L., Zhao, H., Dong, G., Li, J.: On the complexity of finding emerging patterns. Theor. Comput. Sci. 335, 15–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: SIGMOD, Dallas, Texas, United States, pp. 1–12. ACM, New York (2000)

    Google Scholar 

  82. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, USA (1967)

    MATH  Google Scholar 

  83. Romanski, S.: Operations on families of sets for exhaustive search, given a monotonic function. In: JCDKB, Jerusalem, Israel, pp. 310–322 (1988)

    Google Scholar 

  84. Romanski, S.: An Algorithm Searching for the Minima of Monotonic Boolean Function and its Applications. PhD thesis, Warsaw University of Technology (1989)

    Google Scholar 

  85. Liu, B., Ma, Y., Wong, C.K.: Improving an association rule based classifier. In: [159], pp. 504–509

    Google Scholar 

  86. Li, W.: Classification based on multiple association rules (2001)

    Google Scholar 

  87. Garriga, G.C., Kralj, P., Lavrač, N.: Closed sets for labeled data. J. Mach. Learn. Res. 9, 559–580 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: SIGMOD, Seattle, Washington, United States, pp. 85–93. ACM, New York (1998)

    Google Scholar 

  89. Meretakis, D., Wüthrich, B.: Extending naïve bayes classifiers using long itemsets. In: KDD, San Diego, California, United States, pp. 165–174. ACM, New York (1999)

    Google Scholar 

  90. Wang, Z., Fan, H., Ramamohanarao, K.: Exploiting maximal emerging patterns for classification. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1062–1068. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  91. Soulet, A., Crémilleux, B., Rioult, F.: Condensed representation of eps and patterns quantified by frequency-based measures. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 173–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  92. Soulet, A., Kléma, J., Crémilleux, B.: Efficient mining under rich constraints derived from various datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 223–239. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  93. Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerging patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  94. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD Explorations Newsletter 2, 66–75 (2000)

    Article  MATH  Google Scholar 

  95. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  96. Li, J.: Mining Emerging Patterns to Contruct Accurate and Efficient Classifiers. PhD thesis, University of Melbourne (2001)

    Google Scholar 

  97. Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging patterns. In: [159], pp. 191–200

    Google Scholar 

  98. Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A new instance-based lazy discovery and classification system. Mach. Learn. 54, 99–124 (2004)

    Article  MATH  Google Scholar 

  99. Fan, H.: Efficient Mining of Interesting Emerging Patterns and Their Effective Use in Classification. PhD thesis, University of Melbourne (2004)

    Google Scholar 

  100. Merris, R.: Graph Theory. Wiley Interscience, New York (2000)

    Book  MATH  Google Scholar 

  101. Berge, C.: Hypergraphs, vol. 45. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  102. Kavvadias, D.J., Stavropoulos, E.C.: Evaluation of an algorithm for the transversal hypergraph problem. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 72–84. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  103. Elbassioni, K.M.: On the complexity of monotone dualization and generating minimal hypergraph transversals. Discrete Appl. Math. 156, 2109–2123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  104. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  105. Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: Zbdd-based backtrack search sat solver. In: IWLS, pp. 131–136 (2002)

    Google Scholar 

  106. ichi Minato, S.: Binary decision diagrams and applications for VLSI CAD. Kluwer Academic Publishers, Norwell (1996)

    Book  MATH  Google Scholar 

  107. Cerny, E., Marin, M.A.: An approach to unified methodology of combinational switching circuits. IEEE Transactions on Computers 26, 745–756 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  108. ichi Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems. In: DAC, pp. 272–277. ACM, New York (1993)

    Google Scholar 

  109. Mishchenko, A.: An introduction to zero-suppressed binary decision diagrams, Tutorial (2001)

    Google Scholar 

  110. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  111. Wegener, I.: The complexity of Boolean functions. John Wiley & Sons, Inc., New York (1987)

    MATH  Google Scholar 

  112. Cykier, A.: Prime implicants of boolean functions, methods for finding and application (1997) (in polish)

    Google Scholar 

  113. Kryszkiewicz, M.: Fast algorithm finding reducts of monotonic boolean functions. ICS Research Report 42/93 (1993)

    Google Scholar 

  114. Anderson, M.: Synthesis of Information Systems. Warsaw University of Technology (1994) (in Polish)

    Google Scholar 

  115. Brown, F.M.: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  116. Garfinkel, R., Nemhauser, G.L.: Integer programming. John Wiley & Sons, New York (1978)

    MATH  Google Scholar 

  117. Susmaga, R.: Parallel computation of reducts. In: [157], pp. 450–457

    Google Scholar 

  118. Zhou, P.L., Mohammed, S.: A reduct solving parallel algorithm based on relational extension matrix. In: Arabnia, H.R. (ed.) PDPTA, pp. 924–931. CSREA Press (2007)

    Google Scholar 

  119. Bjorvand, A.T., Komorowski, J.: Practical applications of genetic algorithms for efficient reduct computation. In: IMACS

    Google Scholar 

  120. Walczak, Z., Dominik, A., Terlecki, P.: Space decomposition in the minimal reduct problem. In: National Conference on Evolutionary Computation and Global Optimization, Kazimierz Dolny, Poland. Warsaw University of Technology (2004)

    Google Scholar 

  121. Sapiecha, P.: An approximation algorithm for a certain class of np-hard problems. In: ICS Research Report 21/92 (1992)

    Google Scholar 

  122. Wang, X., Yang, J., Peng, N., Teng, X.: Finding minimal rough set reducts with particle swarm optimization. In: [154], pp. 451–460

    Google Scholar 

  123. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recogn. Lett. 29, 1351–1357 (2008)

    Article  Google Scholar 

  124. Terlecki, P., Walczak, K.: Attribute set dependence in apriori-like reduct computation. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 268–276. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  125. Terlecki, P., Walczak, K.: Attribute set dependence in reduct computation. Transactions on Computational Science 2, 118–132 (2008)

    MATH  Google Scholar 

  126. Kryszkiewicz, M., Lasek, P.: Fast discovery of minimal sets of attributes functionally determining a decision attribute. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 320–331. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  127. Kryszkiewicz, M., Lasek, P.: Fun: Fast discovery of minimal sets of attributes functionally determining a decision attribute. T. Rough Sets 9, 76–95 (2008)

    Google Scholar 

  128. Bodon, F.: A fast apriori implementation. In: Goethals, B., Zaki, M.J. (eds.) FIMI. CEUR Workshop Proceedings, vol. 90 (2003), CEUR-WS.org

  129. Komorowski, J., Ohrn, A., Skowron, A.: Case studies: Public domain, multiple mining tasks systems: Rosetta rough sets, pp. 554–559 (2002)

    Google Scholar 

  130. Terlecki, P., Walczak, K.: On the relation between rough set reducts and jumping emerging patterns. Information Sciences 177, 74–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  131. Terlecki, P., Walczak, K.: Local reducts and jumping emerging patterns in relational databases. In: [158], pp. 358–367

    Google Scholar 

  132. Shan, N., Ziarko, W.: An incremental learning algorithm for constructing decision rules. In: International Workshop on Rough Sets and Knowledge Discovery, Banff, Canada, pp. 326–334. Springer, Heidelberg (1994)

    Google Scholar 

  133. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules to correlations. In: Peckham, J. (ed.) SIGMOD, pp. 265–276. ACM Press, New York (1997)

    Chapter  Google Scholar 

  134. Ruiz, I.F., Balcázar, J.L., Bueno, R.M.: Bounding negative information in frequent sets algorithms. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 50–58. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  135. Savasere, A., Omiecinski, E., Navathe, S.B.: Mining for strong negative associations in a large database of customer transactions. In: ICDE, pp. 494–502. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  136. Yuan, X., Buckles, B.P., Yuan, Z., Zhang, J.: Mining negative association rules. In: ISCC, pp. 623–628. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  137. Boulicaut, J.F., Bykowski, A., Jeudy, B.: Towards the tractable discovery of association rules with negations. In: FQAS, Warsaw, Poland, pp. 425–434 (2000)

    Google Scholar 

  138. Kryszkiewicz, M., Cichon, K.: Support oriented discovery of generalized disjunction-free representation of frequent patterns with negation. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 672–682. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  139. Cichosz, P.: Learning systems. WNT, Warsaw (2000) (in Polish)

    MATH  Google Scholar 

  140. Terlecki, P., Walczak, K.: Local table condensation in rough set approach for jumping emerging pattern induction. In: ICCS Workshop. Springer, Sheffield (2007)

    Google Scholar 

  141. Terlecki, P., Walczak, K.: Efficient discovery of top-k minimal jumping emerging patterns. In: [156], pp. 438–447

    Google Scholar 

  142. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  143. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled sata with co-training. In: COLT, pp. 92–100 (1998)

    Google Scholar 

  144. Terlecki, P., Walczak, K.: Adaptive classification with jumping emerging patterns. In: [155], pp. 39–46.

    Google Scholar 

  145. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  146. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  147. Dehuri, S., Patnaik, S., Ghosh, A., Mall, R.: Application of elitist multi-objective genetic algorithm for classification rule generation. Appl. Soft Comput. 8, 477–487 (2008)

    Article  Google Scholar 

  148. Vailaya, A., Jain, A.K.: Reject option for vq-based bayesian classification, pp. 2048–2051 (2000)

    Google Scholar 

  149. Mascarilla, L., Frélicot, C.: Reject strategies driven combination of pattern classifiers. Pattern Anal. Appl. 5, 234–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  150. Li, J., Manoukian, T., Dong, G., Ramamohanarao, K.: Incremental maintenance on the border of the space of emerging patterns. Data Min. Knowl. Discov. 9, 89–116 (2004)

    Article  MathSciNet  Google Scholar 

  151. Fumera, G., Pillai, I., Roli, F.: Classification with reject option in text categorisation systems. In: ICIAP, pp. 582–587. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  152. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory 16, 41–46 (1970)

    Article  MATH  Google Scholar 

  153. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  154. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

    Google Scholar 

  155. Kohavi, R., John, G.H., Long, R., Manley, D., Pfleger, K.: Mlc++: A machine learning library in c++. In: ICTAI, New Orleans, Louisiana, USA, pp. 740–743 (1994)

    Google Scholar 

  156. Karypsis, G.: Cluto. a clustering toolkit. release 2.0 (2002)

    Google Scholar 

  157. Dong, G., Tang, C., Wang, W.: WAIM 2003. LNCS, vol. 2762. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  158. Zighed, D.A., Komorowski, H.J., Zytkow, J.M. (eds.): PKDD 2000. LNCS, vol. 1910. Springer, Heidelberg (2000)

    Google Scholar 

  159. Polkowski, L., Skowron, A. (eds.): RSCTC 1998. LNCS, vol. 1424. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  160. Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3641. Springer, Heidelberg (2005)

    Google Scholar 

  161. Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.): RSCTC 2008. LNCS (LNAI), vol. 5306. Springer, Heidelberg (2008)

    Google Scholar 

  162. Wang, G., Rui Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y.: RSKT 2008. LNCS (LNAI), vol. 5009. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  163. Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.): RSCTC 2006. LNCS (LNAI), vol. 4259. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Terlecki, P. (2010). On the Relation between Jumping Emerging Patterns and Rough Set Theory with Application to Data Classification. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds) Transactions on Rough Sets XII. Lecture Notes in Computer Science, vol 6190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14467-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14467-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14466-0

  • Online ISBN: 978-3-642-14467-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics