Skip to main content

Abstract

The genus Glycine is one of the most important genera in legume plants. It is divided into two subgenera, Glycine Willd. (perennial) and Soja (Moench) F.J. Herm (annual). The subgenus Soja includes two species: an economically very important crop, the soybean [(G. max (L.) Merr.)], and its wild annual progenitor, G. soja Sieb. and Zucc. The subgenus Glycine contains 26 wild perennial species. The annual and perennial soybean species are significantly distantly related. Wild perennial Glycine species have great potential for soybean improvement. These species are extremely diverse morphologically, cytologically, and genomically, grow in very diverse climates, and have a wide geographical distribution. They are a rich source of agronomically useful genes. The genus Glycine offers a good model for studying evolution in natural allopolyploids. The primarily Australian perennial subgenus Glycine includes a large, recently formed allopolyploid complex comprising several diploid genomes that have formed polyploids in various combinations. During the past two decades, literature on genomic relationships in Glycine has been dominated by cytogenetics and molecular studies. The comprehension of genomic relationships among species is important to systematists, evolutionary biologists, cytogeneticists, molecular biologists, and plant breeders. This chapter provides an update on classical and molecular studies in the genus Glycine and their use for soybean improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad QN, Britten EJ, Byth DE (1977) Inversion bridges and meiotic behavior in species hybrids of soybeans. J Hered 68:360–364

    Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1979) Inversion heterozygosity in the hybrid soybean × Glycine soja. J Hered 70:358–364

    Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1983) A quantitative method of karyotypic analysis applied to the soybean, Glycine max. Cytologia 48:879–892

    Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1984) The karyotype of Glycine soja and its relationship to that of the soybean, Glycine max. Cytologia 49:645–658

    Google Scholar 

  • Bentham G (1864) Flora Australiensis, vol 2. L. Reeve, London

    Google Scholar 

  • Bentham G (1865) On the genera Sweetia Sprengel and Glycine Linn., simultaneously published under the name of Leptolobium. J Linn Soc Bot 8:59–267

    Google Scholar 

  • Bernard RL (1972) Two genes affecting stem termination in soybeans. Crop Sci 12:235–239

    Google Scholar 

  • Bilgin D, DeLucia EH, Zangerl AR, Singh RJ (2008) Plant-derived biofungicide against soybean rust disease. US Provisional Application No 61/028,459

    Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    PubMed  CAS  Google Scholar 

  • Bodanese-Zanettini MH, Lauxen MS, Richter SNC, Cavalli-Molina S, Lange CF, Wang PJ, Hu CY (1996) Wide hybridization between Brazilian soybean cultivars and wild perennial relatives Theor Appl Genet 93:703–709

    Google Scholar 

  • Boerma HR, Specht JE (eds) (2004) Soybeans: improvement, production, and uses, vol 16, 3rd edn, Agronomy monograph. ASA, CSSA, SSSA, Madison, WI

    Google Scholar 

  • Broich SL (1978) The systematic relationships within the genus Glycine Willd. subgenus soja (Moench) F.J. Hermann. MS Thesis, Iowa State University, Ames, IA, USA

    Google Scholar 

  • Broich SL, Palmer RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23–32

    Google Scholar 

  • Broich S, Palmer RG (1981) Evolutionary studies of the soybean: the frequency and distribution of alleles among collections of Glycine max and soja of various origin. Euphytica 30:55–64

    Google Scholar 

  • Broué P, Marshall DR, Muller WJ (1977) Biosystematics of subgenus Glycine (Verdc.): isoenzymatic data. Aust J Bot 25:555–566

    Google Scholar 

  • Broué P, Marshall DR, Grace JP (1979) Hybridization among the Australian wild relatives of the soybean. J Aust Inst of Agric Sci 45:256–257

    Google Scholar 

  • Broué P, Douglass J, Grace JP, Marshall DR (1982) Interspecific hybridization of soybeans and perennial Glycine species indigenous to Australia via embryo culture. Euphytica 31:715–724

    Google Scholar 

  • Brown AHD, Doyle JL, Grace JP, Doyle JJ (2002) Molecular phylogenetic relationships within and among diploid races of Glycine tomentella (Leguminosae). Aust Syst Bot 15:37–47

    Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718

    CAS  Google Scholar 

  • Burdon JJ (1988) Major gene for resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean Theor Appl Genet 75:923–928

    Google Scholar 

  • Burdon JJ, Marshall DR (1981) Evaluation of Australian native species of Glycine for resistance to soybean rust Plant Dis 65:44–45

    Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964

    PubMed  CAS  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    PubMed  CAS  Google Scholar 

  • Cao KM, Yuan WM, Zhan S, Xu QM, Xu B (1996) Cloning and structure analysis of rbcS gene from wild soybean. Acta Bot Sin 38:753–7576

    CAS  Google Scholar 

  • Carlson JB, Lersten NR (2004) Reproductive morphology. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, vol 16, 3rd edn, Agron Monogr. ASA, CSSA, SSSA, Madison, WI, pp 59–95

    Google Scholar 

  • Carpenter JB, Fehr WR (1986) Genetic variability for desirable agronomic traits in populations containing Glycine soja germplasm. Crop Sci 26:681–686

    Google Scholar 

  • Carter TE Jr, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, vol 16, 3rd edn, Agron Monogr. ASA, CSSA, SSSA, Madison, WI, pp 303–416

    Google Scholar 

  • Chen TY, Shiao MS, Pan BS (2005) Inhibition of 12-and 15-lipoxygenase activities and protection of human and tilapia low density lipoprotein oxidation by I-Tiao-Gung (Glycine tomentella). Lipids 40:1171–1177

    PubMed  CAS  Google Scholar 

  • Chen R, Hu Z, Zhang H (2009) Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol 51(12):1071–1079

    PubMed  CAS  Google Scholar 

  • Cho YH, Yoon MS, Lee J, Baek HJ, King CY, Kim TS, Cho EG, Lee HB (2006) Diversity and geographical relationships by SSR marker in subgenus Soja originated from Korea. Korean J Crop Sci 51:239–247

    Google Scholar 

  • Choi IY, Kang JH, Song HS, Kim NS (1999) Genetic diversity measured by simple sequence repeat variations among the wild soybean, Glycine soja, collected along the riverside of five major rivers in Korea. Genes Genet Syst 74:169–177

    CAS  Google Scholar 

  • Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwag EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype, single-nucleotide polymorphism analysis. Genetics 176:685–696

    PubMed  CAS  Google Scholar 

  • Chuang WL, Haugland O, Pan BS, Evensen O (2008) Isoflavone-rich extracts from wooly glycine Glycine tomentella inhibits LPS-induced TNF-alpha expression in a macrophage cell line of Atlantic salmon (Salmo salar L). Mol Immunol 45(15):3956–3964

    PubMed  CAS  Google Scholar 

  • Chung GH, Kim JH (1990) Production of interspecific hybrids between Glycine max and G. tomentella through embryo culture Euphytica 48:97–101

    Google Scholar 

  • Chung GH, Kim KS (1991) Obtaining intersubgeneric hybridization between Glycine max and Glycine latifolia through embryo culture. Korean J Plant Tissue Cult 18:39–45

    Google Scholar 

  • Chung G, Singh RJ (2008) Broadening the genetic base of soybean: a multi-disciplinary approach. Crit Rev Plant Sci 27:295–341

    CAS  Google Scholar 

  • Concibido V, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    PubMed  CAS  Google Scholar 

  • Costanza SH, Hymowitz T (1987) Adventitious roots in Glycine subg Glycine (Leguminosae): morphological and taxonomic indicators of the B Genome. Plant Syst Evol 158:37–46

    Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Cregan PB, Kollipara KP, Xu SJ, Singh RJ, Hymowitz T (2001) Primary trisomics and SSR markers as tools to associate chromosomes with linkage groups in soybean. Crop Sci 41:1262–1267

    CAS  Google Scholar 

  • Cui Z, Carter TE Jr, Burton JW (2000a) Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. Crop Sci 40:1470–1481

    Google Scholar 

  • Cui Z, Carter TE Jr, Burton JW (2000b) Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage. Crop Sci 40:1780–1793

    Google Scholar 

  • Cui Z, Carter TE Jr, Burton JW, Wells R (2001) Phenotypic diversity of modern Chinese and North American soybean cultivars. Crop Sci 41:1954–1967

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin, London

    Google Scholar 

  • Dong YS, Zhuang BC, Zhao LM, Sun H, He MY (2001) The genetic diversity of annual wild soybeans grown in China. Theor Appl Genet 103:98–103

    Google Scholar 

  • Dong YS, Zhao LM, Liu B, Wang ZW, Jin ZQ, Sun H (2004) The genetic diversity of cultivated soybean grown in China. Theor Appl Genet 108:931–936

    PubMed  CAS  Google Scholar 

  • Doyle JJ (1988) 5S ribosomal gene variation in the soybean and its progenitor. Theor Appl Genet 75:621–624

    CAS  Google Scholar 

  • Doyle JJ, Beachy RN (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor Appl Genet 70:369–376

    CAS  Google Scholar 

  • Doyle MJ, Brown AHD (1985) Numerical analysis of isozyme variation in Glycine tomentella. Biochem Syst Ecol 13:413–419

    CAS  Google Scholar 

  • Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186(1):73–85

    PubMed  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg: legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    PubMed  CAS  Google Scholar 

  • Doyle MJ, Grant JE, Brown AHD (1986) Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae) and spontaneous doubling in their hybrids. Aust J Bot 34:523–535

    Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1990a) Analysis of a polyploidy complex in Glycine with chloroplast and nuclear DNA. Aust Syst Bot 3:125–136

    Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1990b) Chloroplast DNA phylogenetic affinities of newly described species in Glycine (Leguminosae: Phaseoleae). Syst Bot 15:466–471

    Google Scholar 

  • Doyle JJ, Doyle JL, Grace JP, Brown AHD (1990c) Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors. Syst Bot 15:173–181

    Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1999a) Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles versus chloroplast haplotypes. Mol Biol Evol 16:354–362

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1999b) Origins colonization and lineage recombination in a widespread perennial soybean polyploid complex. Proc Natl Acad Sci USA 96:10741–10745

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Pfeil BE (2000) Confirmation of shared and divergent genomes in the Glycine tabacina polyploidy complex (Leguminosae) using histone H3-D sequences. Syst Bot 25:437–448

    Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Palmer RG (2002) Genomes multiple origins and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex: histone H3-D gene sequences. Evolution 56:1388–1402

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL, Harbison C (2003) Chloroplast-expressed glutamine synthetase in Glycine and related Leguminosae: phylogeny gene duplication and ancient polyploidy. Syst Bot 28:567–577

    Google Scholar 

  • Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004) Evolution of the perennial soybean polyploid complex (Glycine subgenus glycine): a study of contrasts. Biol J Linn Soc 82:583–597

    Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    PubMed  CAS  Google Scholar 

  • Ertl DS, Fehr WR (1985) Agronomic performance of soybean genotypes from Glycine max × Glycine soja crosses. Crop Sci 25:589–592

    Google Scholar 

  • FAOSTAT (2008) http://www.faostat.org

  • Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler J, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744

    PubMed  CAS  Google Scholar 

  • Fukuda Y (1933) Cyto-genetical studies on the wild and cultivated Manchurian soybeans (Glycine L). Jpn J Bot 6:489–506

    Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    PubMed  CAS  Google Scholar 

  • Gill N, Findley S, Walling JG, Ma J, Stacey G, Doyle J, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean Glycine max (L) Merr. Plant Physiol 151:1167–1174

    PubMed  CAS  Google Scholar 

  • Goldblatt P (1981) Cytology and phylogeny of Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, part 2. Royal Botanic Gardens, Kew, pp 427–463

    Google Scholar 

  • Grant JE, Brown AHD, Grace JP (1984a) Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Aust J Bot 32:665–677

    CAS  Google Scholar 

  • Grant JE, Grace JP, Brown AHD, Putievsky E (1984b) Interspecific hybridization in Glycine Willd subgenus Glycine (Leguminosae). Aust J Bot 32:655–663

    Google Scholar 

  • Grant JE, Pullen R, Brown AHD, Grace JP, Gresshoff PM (1986) Cytogenetic affinity between the new species Glycine argyrea and its congeners. J Hered 77:423–426

    Google Scholar 

  • Griffor MC, Vodkin LO, Singh RJ, Hymowitz T (1991) Fluorescent in situ hybridization to soybean metaphase chromosomes. Plant Mol Biol 17:101–109

    PubMed  CAS  Google Scholar 

  • Gurley WB, Hepburn AG, Key JL (1979) Sequence organization of the soybean genome. Biochim Biophys Acta 561:167–183

    PubMed  CAS  Google Scholar 

  • Hadley HH, Hymowitz T (1973) Speciation and cytogenetics. In: Caldwell BE (ed) Soybeans: improvement production and uses, vol 16, Agron Monogr. ASA, Madison, WI, pp 97–116

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Hartman GL, Gardner ME, Hymowitz T, Naidoo GC (2000) Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci 40:545–549

    Google Scholar 

  • Hartman GL, Wang TC, Hymowitz T (1992) Sources of resistance to soybean rust in perennial Glycine species. Plant Dis 76:396–399

    Google Scholar 

  • Hartwig EE (1973) Varietal development. In: Caldwell BE (ed) Soybeans: improvement production and uses, vol 16, Agron Monogr. ASA, Madison, WI, pp 187–210

    Google Scholar 

  • Henderson P (1881) Henderson’s handbook of plants. Henderson, New York

    Google Scholar 

  • Hermann FJ (1962) A revision of the genus Glycine and its immediate allies. USDA-ARS Tech Bull No 1268, 82

    Google Scholar 

  • Hisano H, Sato S, Isobe S et al (2007) Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res 14:271–281

    PubMed  CAS  Google Scholar 

  • Hitchcock AS, Green ML (1947) Species lectotypical generum. Linn Brit 16:114–118

    Google Scholar 

  • Hood MJ, Allen FL (1980) Interspecific hybridization studies between cultivated soybean Glycine max and a perennial wild relative G falcata. Agron Abstr. ASA, Madison, WI, p58

    Google Scholar 

  • Horlock CM, Teakle DS, Jones RM (1997) Natural infection of the native pasture legumes, Glycine latifolia, by alfalfa mosaic virus in Queensland. Aust Plant Path 26:115–116

    Google Scholar 

  • Hui DW (1997) Re-constructing phylogenetic relationship of Glycine species using ITS-1 sequences of the rRNA gene. Chin Sci 27:327–333

    Google Scholar 

  • Hui DW, Zhuang BC, Chen SY (1996) Phylogeny of genus Glycine reconstructed by RAPD fingerprinting. Acta Genet Sin 23:460–468

    CAS  Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetics. In: Caldwell BE (ed) Soybeans: improvement production and uses, vol 16, 3rd edn, Agron Monogr. ASA, CSSA, SSSA, Madison, WI, pp 97–136

    Google Scholar 

  • Hymowitz T, Singh RJ (1987) Taxonomy and speciation. In: Wilcox JR (ed) Soybeans: improvement production and uses. ASA, Madison, WI, pp 23–48

    Google Scholar 

  • Hymowitz T, Singh RJ, Larkin RP (1990) Long-distance dispersal: the case for the allopolyploid Glycine tabacina (Labill) Benth and G tomentella Hayata in the West-Central Pacific. Micronesica 23:5–13

    Google Scholar 

  • Hymowitz T, Singh RJ, Kollipara KP (1998) The genomes of Glycine. Plant Breed Rev 16:289–317

    CAS  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    PubMed  CAS  Google Scholar 

  • Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944

    PubMed  CAS  Google Scholar 

  • Hyten DL, Song Q, Choe I-K, Yoon M-S, Specht JE, Mutukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the Golden Gate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    PubMed  CAS  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks NT, Fickus EW et al (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    PubMed  Google Scholar 

  • Hyten DL, Choi I-Y, Song Q, Specht JE, Carter TE et al (2010b) A high density integrated genetic linkage map of soybean and the development of a 1,536 Universal Soy Linkage Panel for QTL mapping. Crop Sci 50:960–968

    CAS  Google Scholar 

  • Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NW, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, Del Campo SM, Metcalf M, Nguyen A, O'Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MA, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol 148:1740–1759

    PubMed  CAS  Google Scholar 

  • Ji W, Li Y, Li J, Dai CH, Wang X, Bai X, Cai H, Yang L, Zhu YM (2006) Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol 6:4

    PubMed  Google Scholar 

  • Kabelka EA, Carlson SR, Diers BW (2006) Glycine soja PI 468916 SCN resistance loci’s associated effects on soybean seed yield and other agronomic traits. Crop Sci 46:622–629

    Google Scholar 

  • Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) rbcL and legume phylogeny with particular reference to Phaseoleae, Milletieae and allies. Syst Bot 26:515–536

    Google Scholar 

  • Karasawa K (1936) Crossing experiments with Glycine soja and G ussuriensis. Jpn J Bot 8:113–118

    Google Scholar 

  • Karasawa K (1952) Crossing experiments with Glycine soja and G gracilis. Genetica 26:357–358

    PubMed  CAS  Google Scholar 

  • Karpechenko GD (1925) [On the chromosomes of Phaseolinae]. Trudy po Prikladnoi Botanike, Genetike i Selektsii (Bulletin of Applied Botany, Genetics and Plant Breeding, Leningrad) 14(2):143–148 (In Russian with English summary)

    Google Scholar 

  • Kihara H, Lilienfeld FA (1932) Genomanalyse bei Triticum und Aegilops IV Untersuchungen an Aegilops x Triticum-und Aegilops-bastarden. Cytologia 3:384–456

    Google Scholar 

  • Kilen TC, He G (1992) Identification and inheritance of metribuzin tolerance in wild soybean. Crop Sci 32:684–685

    CAS  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1993) Genomic diversity in aneudiploid (2n = 38) and diploid (2n = 40) Glycine tomentella revealed by cytogenetic and biochemical methods. Genome 36:391–396

    PubMed  CAS  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1994) Genomic diversity and multiple origins of tetraploid (2n = 78, 80) Glycine tomentella. Genome 37:448–459

    PubMed  CAS  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1995) Genomic relationships in the genus Glycine (Fabaceae: Phaseoleae): use of a monoclonal antibody to the soybean Bowman-Birk inhibitor as a genome marker. Am J Bot 82:1104–1111

    CAS  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1997) Phylogenetic and genomic relationships in the genus Glycine Willd based on sequences from the ITS region of nuclear rDNA. Genome 40:57–68

    PubMed  CAS  Google Scholar 

  • Kumar PS, Hymowitz T (1989) Where are the diploid (2n =  2x = 20) genome donors of GlycineWilld (Leguminosae Papilionoideae)? Euphytica 40:221–226

    Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Vaughan D (2006) Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol 15:959–974

    PubMed  CAS  Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Vaughan D (2010) The origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Mol Ecol 19:2346–2360

    PubMed  CAS  Google Scholar 

  • Lackey JA (1977a) A synopsis of the Phaseoleae (Leguminosae Papilionaideae). PhD Dissertation, Iowa State University, Ames, IA, USA

    Google Scholar 

  • Lackey JA (1977b) Neonotonia a new generic name to include Glycine wighti (Arnott) Verdecourt (Leguminosae Papilionoideae). Phytologia 37:209–212

    Google Scholar 

  • Lackey JA (1977c) Revised classification of the tribe Phaseoleae (Leguminosae:Papilionoideae) and its relation to canavanine distribution. Bot J Linn Soc 74:163–178

    Google Scholar 

  • Lackey JA (1980) Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. Am J Bot 67:595–602

    Google Scholar 

  • Ladizinsky G, Newell CA, Hymowitz T (1979) Wide crosses in soybean: prospects and limitations. Euphytica 28:421–423

    Google Scholar 

  • Lee J, Hymowitz T (2001) A molecular phylogenetic study of the subtribe Glycininae (Leguminisae) derived from the chloroplast DNA rps16 intron sequences. Am J Bot 88:2064–2073

    CAS  Google Scholar 

  • Lee JS, Verma DPS (1984) Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. EMBO J 3:2745–2752

    PubMed  CAS  Google Scholar 

  • Lee JM, Bush A, Specht JE, Shoemaker R (1999) Mapping duplicate genes in soybean. Genome 42:829–836

    CAS  Google Scholar 

  • Lee JD, Yu JK, Hwang YH, Blake S, So YS, Lee GJ, Nguyen HT, Shannon JG (2008) Genetic diversity of wild soybean (Glycine soja Sieb and Zucc) accessions from South Korea and other countries. Crop Sci 48:606–616

    Google Scholar 

  • Lee JD, Shannon JG, Vuong TD, Moon H, Nguyen HT, Tsukamoto T, Chung G (2010) Genetic diversity in wild soybean (Glycine soja Sieb and Zucc) accessions from southern islands of Korean peninsula. Plant Breed 129:257–263

    CAS  Google Scholar 

  • Lersten NR, Carlson JB (2004) Vegetative morphology. In: Boerma HR, Specht JE (eds) Soybeans: improvement production and uses, vol 16, 3rd edn, Agron Monogr. ASA, CSSA, SSSA, Madison, WI, pp 15–57

    Google Scholar 

  • Lewis G, Schrire B, Mackind B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Li Z, Nelson RL (2001) Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci 41:1337–1347

    CAS  Google Scholar 

  • Li Z, Nelson RL (2002) RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci 42:1737–1744

    Google Scholar 

  • Li Z, Qiu L, Thompson JA, Welsh MM, Nelson RL (2001) Molecular genetic analysis of US and Chinese soybean ancestral lines. Crop Sci 41:1330–1336

    CAS  Google Scholar 

  • Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z, GuanY ZhuL, Ning X, Smulders MJ, Li W, Piao R, Cui Y, Yu Z, Guan M, Chang R, Hou A, Shi A, Zhang B, Zhu S, Qiu L (2008) Genetic structure and diversity of cultivated soybean (Glycine max (L) Merr) land races in China. Theor Appl Genet 117:857–871

    PubMed  CAS  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99

    Google Scholar 

  • Lim SM, Hymowitz T (1987) Reaction of perennial wild species of genus Glycine to Septoria glycines. Plant Dis 71:891–893

    Google Scholar 

  • Lin SJ, Lay HL, Wu ST, Thseng FS (2005) Contents of certain isoflavones in Glycine dolichocarpa, G. tabacina and G. tomentella collected in Taiwan. J Food Drug Anal 13:260–266

    CAS  Google Scholar 

  • Linnaeus C (1737) Genera plantarum, 1st edn. Lugduni Batavorum

    Google Scholar 

  • Linnaeus C (1753) Genera plantarum, 2nd edn. Lars Salvius, Stockholm, Spain

    Google Scholar 

  • Lu BR (2004) Conserving biodiversity of soybean gene pool in the biotechnology era. Plant Species Biol 19:115–125

    Google Scholar 

  • Maughan PJ, Saghai-Maroof MA, Buss GR (1995) Microsatellite and amplified sequence length polymorphism in cultivated and wild soybean. Genome 38:715–723

    PubMed  CAS  Google Scholar 

  • Mignucci JS, Chamberlain DW (1978) Interaction of Microsphaera diffusa with soybean and other legumes Phytopathology 68:169–173

    Google Scholar 

  • Newell CA, Hymowitz T (1980) A taxonomic revision in the genus Glycine subgenus Glycine (Leguminosae). Brittonia 32:63–69

    Google Scholar 

  • Newell CA, Hymowitz T (1982) Successful wide hybridization between the soybean and a wild perennial relative G. tomentella Hatyata. Crop Sci 22:1062–1065

    Google Scholar 

  • Newell CA, Hymowitz T (1983) Hybridization in the genus Glycine subgenus Glycine Willd (Leguminosae Papilionoideae). Am J Bot 70:334–348

    Google Scholar 

  • Newell CA, Delannay X, Edge ME (1987) Interspecific hybrids between the soybean and wild perennial relatives. J Hered 78:301–306

    Google Scholar 

  • Nichols DM, Lianzheng W, Pei Y, Glover KD, Diers BW (2007) Variability among Chinese Glycine soja and Chinese and North American soybean genotypes. Crop Sci 47:1289–1298

    CAS  Google Scholar 

  • Ohara M, Shimamoto Y (1994) Some ecological and demographic characteristics of two growth forms of wild soybean (Glycine soja). Can J Bot 72:486–492

    Google Scholar 

  • Ohara M, Shimamoto Y (2002) Importance of genetic characterization and conservation of plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biol 17:51–58

    Google Scholar 

  • Orf (2010) Introduction. In: Bilyeu K, Ratnaparkhe MB, Kole C (eds) Genetics, genomics and breeding of soybean. Science, Enfield, New Hampshire, pp 1–18

    Google Scholar 

  • Palmer RG, Newhouse KE, Graybosch RA, Delannay X (1987) Chromosome structure of the wild soybean. J Hered 78:243–247

    Google Scholar 

  • Pan BS, Kuo YY, Chen TY, Liu YC (2005) Anti-oxidative and anti-inflammatory activities of two different species of a Chinese herb I-Tiao-Gung. Life Sci 77:2830–2839

    CAS  Google Scholar 

  • Pantalone VR, Kenworthy WJ, Slaughter LH, James BR (1997) Chloride tolerance in soybean and perennial Glycine accessions Euphytica 97:235–239

    Google Scholar 

  • Pfeil BE, Tindale MD, Craven LA (2001) A review of the Glycine clandestina species complex (Fabaceae:Phaseolae) reveals two new species. Aust Syst Bot 14:891–900

    Google Scholar 

  • Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ (2005) Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 54:441–454

    PubMed  CAS  Google Scholar 

  • Pfeil BE Craven LA (2002) New taxa in Glycine (Fabaceae: Phaseolae) from north-western Australia. Aust Syst Bot 15:565–573

    Google Scholar 

  • Pfeil BE, Craven LA, BrownAHD, Murray BG, Doyle JJ (2006) Three new species of northern Australian Glycine (Fabaceae Phaseolae) G. gracei, G. montis-douglas and G. syndetika. Aust Syst Bot 19:245–258

    Google Scholar 

  • Polhill RM (1994) Classification of the Leguminosae. In: Bisby FA, Buckingham J, Harborne JB (eds) Phytochemical dictionary of the Leguminosae. Chapman and Hall, New York, pp 35–48

    Google Scholar 

  • Powell W, Morgante M, Doyle JJ, McNicol JW, Tingey SV, Rafalske AJ (1996) Gene pool variation in genus Glycine subgenus soja revealed by polymorphic nuclear and chloroplast micro-satellites. Genetics 144:793–803

    PubMed  CAS  Google Scholar 

  • Pueppke SG (1988) Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine Plant and Soil 109:189–193

    Google Scholar 

  • Putievsky E, Broué P (1979) Cytogenetics of hybrids among perennial species of Glycine subgenus Glycine. Aust J Bot 27:713–723

    Google Scholar 

  • Qian D, Allen FL, Stacey G, Gresshoff PM (1996) Plant genetic study of restricted nodulation in soybean. Crop Sci 36:243–249

    Google Scholar 

  • Rauscher JT, Doyle JJ, Brown AHD (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166:987–998

    PubMed  CAS  Google Scholar 

  • Riggs RD, Wang S, Singh RJ, Hymowitz T (1998) Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J Nematol 30 (4S):547–552

    Google Scholar 

  • Sakai T, Kaizuma N (1985) Hybrid embryo formation in an intersubgeneric cross of soybean (Glycine max MERILL) with a wild relative (G. tomentella HAYATA) Japan J Breed 35:363–374

    Google Scholar 

  • Schlueter JA, Dixn P, Granger C, Grant D, Clark L et al (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    PubMed  CAS  Google Scholar 

  • Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE et al (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8:330

    PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL et al (2010a) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    PubMed  CAS  Google Scholar 

  • Schmutz J, Doyle J, Shoemaker R, Cregan P, Ma J, Schlueter J, Song X, Jetty ASS, Angelova A et al (2010) BAC library resources for genus Glycine. In: Plant and animal genome XVIII conference, San Diego, CA, USA

    Google Scholar 

  • Schoen DJ, Burdon JJ, Brown AHD (1992) Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographical distribution. Theor Appl Genet 83:827–832

    Google Scholar 

  • Sen NK, Vidyabhusan RV (1960) Tetraploid soybeans. Euphytica 9:317–322

    CAS  Google Scholar 

  • Shimamoto Y (1999) Research on wild legume with an emphasis on soybean germplasm. In: Proceedings of the 7th international workshop on genetic resources. Ministry of Agriculture Forestry and Fisheries Press, Tsukuba, Japan, pp 5–17

    Google Scholar 

  • Shimamoto Y, Fukushi H, Abe J, Kanazawa A, Gai J, Gao Z, Xu D (1998) RFLPs of chloroplast and mitochondrial DNA in wild soybean Glycine soja growing in China. Genet Resour Crop Evol 45:433–439

    Google Scholar 

  • Shimamoto Y, Abe J, Gao Z, Gai J, Thseng FS (2000) Characterizing the cytoplasmic diversity and phyletic relationship of Chinese landraces of soybean Glycine max based on RFLPs of chloroplast and mitochondrial DNA. Genet Resour Crop Evol 47:611–617

    Google Scholar 

  • Shoemaker R, Olson T (1993) Molecular linkage map of soybean. In: O’Brien S (ed) Genetic maps: locus maps of complex genomes, 6th edn. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, pp 6.131–6.138

    Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle J (2006) Paleopolyploidy and genome duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    PubMed  CAS  Google Scholar 

  • Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W et al (2008) Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome 51:294–302

    PubMed  CAS  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Singh RJ (2007) Methods for producing fertile crosses between wild and domestic soybean species, US Patent, Publ No US2007/0261139A1

    Google Scholar 

  • Singh RJ, Chung GH (2007) Cytogenetics of soybean: progress and prospectives. Nucleus 50:403–425

    Google Scholar 

  • Singh RJ, Hymowitz T (1985a) Diploid-like meiotic behavior in synthesized amphiploids of the genus Glycine Willd subgenus Glycine. Can J Genet Cytol 27:655–660

    Google Scholar 

  • Singh RJ, Hymowitz T (1985b) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor Appl Genet 71:221–230

    Google Scholar 

  • Singh RJ, Hymowitz T (1985c) Intra-and interspecific hybridization in the genus Glycine subgenus Glycine Willd: Chromosome pairing and genome relationships. Z Pflanzenzuchtg 95:289–310

    Google Scholar 

  • Singh RJ, Hymowitz T (1985d) An intersubgeneric hybrid between Glycine tomentella Hayata and the soybean G max (L) Merr. Euphytica 34:187–192

    Google Scholar 

  • Singh RJ, Hymowitz T (1987) Intersubgeneric crossability in the genus Glycine Willd. Plant Breed 98:171–173

    CAS  Google Scholar 

  • Singh RJ, Hymowitz T (1988) The genomic relationship between Glycine max (L) Merr and G. soja Sieb and Zucc as revealed by pachytene chromosome analysis. Theor Appl Genet 76:705–711

    Google Scholar 

  • Singh RJ, Hymowitz T (1989) The genomic relationships among Glycine soja Sieb and Zucc G. max (L) Merr and ‘G. gracilis’ Skvortz. Plant Breed 103:171–173

    Google Scholar 

  • Singh RJ, Hymowitz T (1991) Identification of four primary trisomics of soybean by pachytene chromosome analysis. J Hered 82:75–77

    Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1987a) Intersubgeneric hybridization of soybeans with a wild perennial species Glycine clandestine Wendl. Theor Appl Genet 74:391–396

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1987b) Polyploid complexes of Glycine tabacina (Labill) Benth and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29:490–497

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1988) Further data on the genomic relationships among wild perennial species (2n = 40) of the genus Glycine Willd. Genome 30:166–176

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1989) Ancestors of 80- and 78-chromosome Glycine tomentella Hayata (Leguminosae). Genome 32:796–801

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1990) Backcrossed-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Sci 30:871–874

    Google Scholar 

  • Singh RJ, Kollipara KP, Ahmad F, Hymowitz T (1992a) Putative diploid ancestors of 80-chromosome Glycine tabacina. Genome 35:140–146

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1992b) Genomic relationships among diploid wild perennial species of the genus Glycine Willd Subgenus Glycine revealed by crossability meiotic chromosome pairing and seed protein electrophoresis. Theor Appl Genet 85:276–282

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1993) Backcross (BC2-BC4)-derived fertile plants from Glycine max and G. tomentella intersubgeneric hybrids. Crop Sci 33:1002–1007

    Google Scholar 

  • Singh RJ, Klein TM, Mauvais CJ, Knowlton S, Hymowitz T, Kostow CM (1998a) Cytological characterization of the transgenic soybean. Theor Appl Genet 96:319–324

    Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998b) The genomes of Glycine canescens F J Herm and G. tomentella Hayata of Western Australia and their phylogenetic relationships in the genus Glycine Willd. Genome 41:669–679

    CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998c) Monosomic alien addition lines derived from Glycine max (L) Merr and G. tomentella Hayata: production characterization and breeding behavior. Crop Sci 38:1483–1489

    Google Scholar 

  • Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103:212–218

    CAS  Google Scholar 

  • Singh RJ, Chung GH, Nelson RL (2007a) Landmark research in Legumes. Genome 50:525–537

    PubMed  CAS  Google Scholar 

  • Singh RJ, Nelson RL, Chung GH (2007b) Soybean (Glycine max (L) Merr). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, vol 4, Oilseed crops. CRC, Boca Raton, FL, pp 13–50

    Google Scholar 

  • Skorupska H, Albertsen MC, Langholz KD, Palmer RG (1989) Detection of ribosomal RNA genes in soybean Glycine max (L) Merr by in situ hybridization. Genome 32:1091–1095

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JF, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    PubMed  CAS  Google Scholar 

  • Stefanovic S, Pfeil BE, Doyle JJ, Palmer JD (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128

    Google Scholar 

  • Straub SCK, Pfeil BE, Doyle JJ (2006) Testing the polyploid past of soybean using a low-copy nuclear gene – is Glycine (Fabaceae: Papilionoideae) an auto- or allopolyploid? Mol Phylogenet Evol 39:580–584

    PubMed  CAS  Google Scholar 

  • Tateishi Y, Ohashi H (1992) Taxonomic studies on Glycine of Taiwan. J Jpn Bot 67:127–147

    Google Scholar 

  • Thompson JS, Bernard RL, Nelson RL (1997) A third allele at the soybean dt1 locus. Crop Sci 37:757–7621

    Google Scholar 

  • Thseng FS, Tsai SJ, Abe J, Wu ST (1999) Glycine formosana Hosokawa in Taiwan: pod morphology, allozyme and DNA polymorphism. Bot Bull Acad Sin 40:251–257

    CAS  Google Scholar 

  • Tindale MD (1984) Two new Eastern Australian species of Glycine Willd (Fabaceae). Brunonia 7:207–213

    Google Scholar 

  • Tindale MD (1986a) A new North Queensland species of Glycine Willd (Fabaceae). Brunonia 9:99–103

    Google Scholar 

  • Tindale MD (1986b) Taxonomic notes on three Australian and Norfolk Island species of Glycine Willd (Fabaceae:Phaseolae) including the choice of a neotype for G. clandestina Wendl. Brunonia 9:179–191

    Google Scholar 

  • Tindale MD, Craven LA (1988) Three newspecies of Glycine (Fabaceae: Phaseolae) from North-western Australia with notes on amphicarpy in the genus. Aust Syst Bot 1:399–410

    Google Scholar 

  • Tindale MD, Craven LA (1993) Glycine pindanica (Fabaceae: Phaseolae), a new species from west Kimberley, Western Australia. Aus Syst Bot 6:371–376

    Google Scholar 

  • Tozuka A, Fukushi H, Hirata T, Ohara M, Kanazawa A, Mikami T, Abe J, Shimamoto Y (1998) Composite and clinal distribution of Glycine soja in Japan revealed by RFLP analysis of mitochondrial DNA. Theor Appl Genet 96:170–176

    CAS  Google Scholar 

  • Veatch E (1934) Chromosomes of the soybean. Bot Gaz 96:189

    Google Scholar 

  • Verdcourt B (1966) A proposal concerning Glycine L. Taxon 15:34–36

    Google Scholar 

  • Verdcourt B (1970) Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. II. Kew Bull 24:235–307

    Google Scholar 

  • Walling JG, Shoemaker RC, Young N, Mudge J, Jackson S (2006) Chromosome level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900

    PubMed  CAS  Google Scholar 

  • Wang KJ, Takahata Y (2007) A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Genet Resour Crop Evol 54:157–165

    CAS  Google Scholar 

  • Wang LX, Guan RX, Li YH, Lin FY, LuanWJ Li W, Ma YS, Liu ZX, Chang RZ, Qiu LJ (2008) Genetic diversity of Chinese spring soybean germplasm revealed by SSR markers. Plant Breed 127:56–61

    Google Scholar 

  • Wawrzynski A, Ashfield T, Chen NW, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O'Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MA, Young ND, Innes RW (2008) Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol 148:1760–1771

    PubMed  CAS  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    CAS  Google Scholar 

  • Woodworth CM (1933) Genetics of the soybean. J Am Soc Agron 25:36–51

    Google Scholar 

  • Wu XL, He CY, Chen SY, Zhuang BC, Wang KJ, Wan XC (2001) Phylogenetic analysis of interspecies in genus Glycine through SSR markers. Acta Genet Sin 28:359–366

    PubMed  CAS  Google Scholar 

  • Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain KG, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K (2007) An integrated high-density linkage map of soybean with RFLP, SSR, STS and AFLP markers using a single F2 population. DNA Res 14:257–269

    PubMed  CAS  Google Scholar 

  • Xu DH, Gai JY (2003) Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breed 122:503–506

    Google Scholar 

  • Xu SJ, Singh RJ, Hymowitz T (2000a) Monosomics in soybean: origin identification cytology and breeding behavior. Crop Sci 40:985–989

    Google Scholar 

  • Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000b) Hypertriploid in soybean: origin identification cytology and breeding behavior. Crop Sci 40:72–77

    Google Scholar 

  • Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    PubMed  CAS  Google Scholar 

  • Yamanaka N, Nagamura Y, Tsubokura Y et al (2000) Quantitative trait locus analysis of flowering time in soybean using a RFLP linkage map. Breed Sci 50:109–115

    CAS  Google Scholar 

  • Yamanaka N, Ninomiya S, Hoshi M et al (2001) An informative linkage map of soybean reveals QTLs for flowering time leaflet morphology and regions of segregation distortion. DNA Res 8:61–72

    PubMed  CAS  Google Scholar 

  • Yang K, Jeong SC (2008) Genetic linkage map of the nucleolus organizer region in the soybean. Genetics 178:605–608

    PubMed  CAS  Google Scholar 

  • Yu H, Kiang YT (1993) Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica 68:213–221

    Google Scholar 

  • Zhu T, Shi L, Doyle JJ, Keim P (1995) A single nuclear locus phylogeny of soybean based on DNA sequence. Theor Appl Genet 90:991–999

    CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK,Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    Google Scholar 

  • Zhuang B (1999) Biological studies of Chinese wild soybean, 1st edn. Science, Beijing, China (in Chinese)

    Google Scholar 

  • Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ratnaparkhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ratnaparkhe, M.B., Singh, R.J., Doyle, J.J. (2011). Glycine. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_5

Download citation

Publish with us

Policies and ethics